
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (12): 14-22.DOI: 10.19491/j.issn.1001-9278.2023.12.003
收稿日期:
2023-06-16
出版日期:
2023-12-26
发布日期:
2023-12-26
通讯作者:
母军(1970-),女,教授,从事木质复合材料研究,mujun@bjfu.edu.cn作者简介:
孙子佳(1999-),女,硕士在读,从事木塑复合材料研究,1804589987@qq.com
SUN Zijia(), LUO Cuimei, WANG Qihang, WANG Xujie, MU Jun(
)
Received:
2023-06-16
Online:
2023-12-26
Published:
2023-12-26
Contact:
MU Jun
E-mail:1804589987@qq.com;mujun@bjfu.edu.cn
摘要:
以竹剩余物为原料制备木质纤维素纳米晶(L⁃CNC),利用单宁酸(TA)中邻苯二酚基团的化学反应活性,将十八胺(ODA)接枝到L⁃CNC表面对其改性,采用溶液浇铸法制备聚乳酸(PLA)复合膜,探讨了改性前后不同含量L⁃CNC对PLA复合膜力学性能、抗氧化性能、紫外屏蔽性能及疏水性能的影响。结果表明,ODA通过TA接枝到L⁃CNC表面可以提高L⁃CNC与PLA的相容性;当改性物ODA⁃TA@L⁃CNC的含量为PLA的1 %(质量分数,下同)时,复合膜的断裂伸长率和断裂韧性分别为20.42 %和8.55 MJ/m3,是纯PLA膜的4倍和11倍,拉伸强度达到46.84 MPa;疏水性能得到显著改善,1 min内接触角稳定达到约100°;当ODA⁃TA@L⁃CNC含量为1.5 %时,复合膜的DPPH自由基清除率为49.30 %,表现出良好的抗氧化性能;在紫外区波长范围内的平均阻隔比为44.81 %,可以屏蔽大部分UVB(280~320 nm)光谱。
中图分类号:
孙子佳, 雒翠梅, 王启航, 王旭洁, 母军. ODA⁃TA@L⁃CNC的制备及对多功能PLA复合膜的影响[J]. 中国塑料, 2023, 37(12): 14-22.
SUN Zijia, LUO Cuimei, WANG Qihang, WANG Xujie, MU Jun. Preparation of ODA⁃TA@L⁃CNC and its effect on multifunctional PLA composite films[J]. China Plastics, 2023, 37(12): 14-22.
薄膜编号 | PLA 质量/g | L⁃CNC 质量/g | ODA⁃TA@ L⁃CNC质量/g |
---|---|---|---|
PLA | 8.00 | 0 | 0 |
0.5% L⁃CNC/PLA | 7.96 | 0.04 | - |
1% L⁃CNC/PLA | 7.92 | 0.08 | - |
1.5% L⁃CNC/PLA | 7.88 | 0.12 | - |
0.5% ODA⁃TA@L⁃CNC/PLA | 7.96 | - | 0.04 |
1% ODA⁃TA@L⁃CNC/PLA | 7.92 | - | 0.08 |
1.5% ODA⁃TA@L⁃CNC/PLA | 7.88 | - | 0.12 |
薄膜编号 | PLA 质量/g | L⁃CNC 质量/g | ODA⁃TA@ L⁃CNC质量/g |
---|---|---|---|
PLA | 8.00 | 0 | 0 |
0.5% L⁃CNC/PLA | 7.96 | 0.04 | - |
1% L⁃CNC/PLA | 7.92 | 0.08 | - |
1.5% L⁃CNC/PLA | 7.88 | 0.12 | - |
0.5% ODA⁃TA@L⁃CNC/PLA | 7.96 | - | 0.04 |
1% ODA⁃TA@L⁃CNC/PLA | 7.92 | - | 0.08 |
1.5% ODA⁃TA@L⁃CNC/PLA | 7.88 | - | 0.12 |
1 | Manfra L, Marengo V, Libralato G, et al. Biodegradable polymers: A real opportunity to solve marine plastic pollution?[J]. Journal of Hazardous Materials, 2021, 416: 125763. |
2 | Zhou L, Ke K, Yang M B, et al. Recent progress on chemical modification of cellulose for high mechanical⁃performance poly (lactic acid)/cellulose composite: a review[J]. Composites Communications, 2021, 23: 100548. |
3 | Rigotti D, Soccio M, Dorigato A, et al. Novel biobased polylactic acid/poly (pentamethylene 2,5⁃furanoate) blends for sustainable food packaging[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13 742⁃13 750. |
4 | Zuo M D, Pan N Y, Liu Q J, et al. Three⁃dimensionally printed polylactic acid/cellulose acetate scaffolds with antimicrobial effect[J]. RSC advances, 2020, 10(5): 2 952⁃2 958. |
5 | Pretula J, Slomkowski S, Penczek S. Polylactides⁃methods of synthesis and characterization[J]. Advanced Drug Delivery Reviews, 2016, 107: 3⁃16. |
6 | Mondal K, Sakurai S, Okahisa Y, et al. Effect of cellulose nanocrystals derived from dunaliella tertiolecta marine green algae residue on crystallization behaviour of poly (lactic acid) [J]. Carbohydrate Polymers, 2021, 261: 117881. |
7 | 董茂林, 陈李栋, 黄六莲, 等. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023: 1⁃17. |
DONG M L, CHEN L D, HUANG L L, et al. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications[J]. CIESC Journal, 2023: 1⁃17. | |
8 | Trifol J, Quintero DCM, Moriana R. Pine cone biorefinery: integral valorization of residual biomass into lignocellulose nanofibrils (LCNF)⁃reinforced composites for packaging[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(5): 2 180⁃2 190. |
9 | Chihaoui B, Tarres Q, Delgado⁃Aguilar M, et al. Lignin⁃containing cellulose fibrils as reinforcement of plasticized PLA biocomposites produced by melt processing using PEG as a carrier[J]. Industrial Crops and Products, 2022, 175: 114287. |
10 | Xu Y Z, Zheng D Y, Chen X J, et al. Mussel⁃inspired polydopamine⁃modified cellulose nanocrystal fillers for the preparation of reinforced and UV⁃shielding poly (lactic acid) films[J]. Journal of Materials Research and Technology, 2022, 19: 4 350⁃4 359. |
11 | Yan W T, Shi M Q, Dong C X, Applications of tannic acid in membrane technologies : a review[J]. Advances in Colloid and Interface Science, 2020, 284: 102267. |
12 | Sileika T S, Barrett D G, Zhang R, et al. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine[J]. Angewandte Chemie International Edition, 2013, 52(41): 10 766⁃10 770. |
13 | 国家质量监督检验检疫总局和国家标准化管理委员会. 塑料拉伸性能的测试 第3部分: 薄膜和薄片的试验条件 [S]. 北京: 中国标准出版社, 2006. |
14 | 杨 旭, 方 健, 覃 敏, 等. 壳聚糖/结冷胶双层膜制备工艺优化及表征[J]. 中国塑料, 2022, 36(11): 14⁃23. |
YANG X, FANG J, QIN M, et al. Preparation process optimization and characterization of chitosan/gellan gum bilayer films[J]. China Plastics, 2022, 36(11): 14⁃23. | |
15 | Shang H, Xu K K, Li X Y, et al. UV⁃protective and high⁃transparency poly (lactic acid) biocomposites for ecofriendly packaging of perishable fruits[J]. International Journal of Biological Macromolecules, 2022, 222: 927⁃937. |
16 | Hu Z, Berry R M, Pelton R, et al. One⁃pot water⁃based hydrophobic surface modification of cellulose nanocrystals using plant polyphenols[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5 018⁃5 026. |
17 | Li B, Whalen J J, Humayun M S, et al. Reversible bioadhesives using tannic acid primed thermally⁃responsive polymers[J]. Advanced Functional Materials, 2020, 30(5): 1907478. |
18 | Xiang H S, Wang B C, Zhong M Q, et al. Sustainable and versatile superhydrophobic cellulose nanocrystals[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(18): 5 939⁃5 948. |
19 | Sunanda R, Zhai L D, Hai L V, et al. One⁃step nanocellulose coating converts tissue paper into an efficient separation membrane[J]. Cellulose, 2018, 25(9): 4 871⁃4 886. |
20 | Ali A, Yu L, Liu H S, et al. Preparation and characterization of starch⁃based composite films reinforced by corn and wheat hulls[J]. Journal of Applied Polymer Science, 2017, 134(32): 45159. |
21 | Yue Y Y, Zhou C J, French A D, et al. Comparative properties of cellulose nano⁃crystals from native and mercerized cotton fibers[J]. Cellulose, 2012, 19(4): 1 173⁃1 187. |
22 | Huang Y X, Lin Q Q, Yu Y L, et al. Functionalization of wood fibers based on immobilization of tannic acid and in situ complexation of Fe (Ⅱ) ions[J]. Applied Surface Science, 2020, 510: 145436. |
23 | Majdoub M, Essamlali Y, Amadine O, et al. Octadecylamine as chemical modifier for tuned hydrophobicity of surface modified cellulose: toward organophilic cellulose nanocrystals[J]. Cellulose, 2021, 28(12): 7 717⁃7 734. |
24 | Santos F A, Iulianelli G C V, Tavares M I S, Effect of microcrystalline and nanocrystals cellulose fillers in materials based on PLA matrix[J]. Polymer Testing, 2017, 61: 280⁃288. |
25 | Wang X, Jia Y, Liu Z, et al. Influence of the lignin content on the properties of poly (lactic acid)/lignin⁃containing cellulose nanofibrils composite films[J]. Polymers, 2018, 10(9): 1 013. |
26 | 姜秀龙. 强韧耐热聚乳酸纳米复合膜材料制备及性能研究[D]. 东华大学, 2022. |
27 | Yang W J, Dominici F, Fortunati E, et al. Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly (lactic) acid films: effect of cellulose nanocrystals and a masterbatch process[J]. RSC Advances, 2015, 5(41): 32 350⁃32 357. |
28 | Yetis F, Liu, X Q, Sampson W, et al. Acetylation of lignin containing microfibrillated cellulose and its reinforcing effect for polylactic acid[J]. European Polymer Journal, 2020, 134: 109803. |
29 | Kai D, Zhang K Y, Jiang L, et al. Sustainable and antioxidant lignin⁃polyester copolymers and nanofibers for potential healthcare applications[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6 016⁃6 025. |
30 | Leite L S F, Pham C, Bilatto S, et al. Effect of tannic acid and cellulose nanocrystals on antioxidant and antimicrobial properties of gelatin films[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(25): 8 539⁃8 549. |
31 | Sun C, Li C X, Li H Y, et al. Modified cellulose nanocrystals enhanced the compatibility between PLA and PBAT to prepare a multifunctional composite film[J]. Journal of Polymers and the Environment, 2022,30(8): 3 139⁃3 149. |
32 | Cui B Y, Liu L X, Li S, et al. Bio⁃inspired, UV⁃blocking, water⁃stable and antioxidant lignin/cellulose films combining high strength, toughness and flexibility[J]. Materials Chemistry Frontiers, 2023, 7(5): 897⁃905. |
33 | Park S Y, Kim J Y, Youn H J, et al. Utilization of lignin fractions in UV resistant lignin⁃PLA biocomposites via lignin⁃lactide grafting[J]. International Journal of Biological Macromolecules, 2019, 138: 1 029⁃1 034. |
34 | Nair S S, Chen H Y, Peng Y, et al. Polylactic acid biocomposites reinforced with nanocellulose fibrils with high lignin content for improved mechanical, thermal, and barrier properties[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10 058⁃10 068. |
[1] | 崔成志, 曹金星, 刘建兰, 张辉. 聚乳酸/热塑性聚氨酯共混材料研究进展[J]. 中国塑料, 2023, 37(9): 75-82. |
[2] | 关国涛, 刘晨泽, 何世权, 宋超洋, 张响, 赵娜, 王超. 抗菌可降解聚乳酸薄膜制备与性能测试[J]. 中国塑料, 2023, 37(9): 8-13. |
[3] | 王磊, 赵敏, 翁云宣, 张彩丽. 机器学习在聚乳酸加工及性能预测中的应用研究进展[J]. 中国塑料, 2023, 37(8): 127-134. |
[4] | 赵萌萌, 杨红娟, 沈思宇, 冯硕, 张伟蒙, 胡晶. 聚乙二醇二缩水甘油醚对PLA/PBAT共混材料相容性及性能的影响[J]. 中国塑料, 2023, 37(8): 20-27. |
[5] | 杜乐, 胡娅洁, 胡健, 孙滔, 云雪艳, 董同力嘎. UV固化制备聚(L⁃乳酸)/壳聚糖薄膜及其热学、力学及抑菌性能研究[J]. 中国塑料, 2023, 37(8): 38-44. |
[6] | 汪杰, 张伟蒙, 胡晶. 聚乳酸⁃羟基乙酸共聚物涂层对聚乳酸3D打印支架的性能影响[J]. 中国塑料, 2023, 37(1): 1-7. |
[7] | 孟鑫, 王小龙, 公维光, 金谊. “三源一体”壳核型阻燃剂的制备及其在聚乳酸中的应用[J]. 中国塑料, 2022, 36(9): 96-104. |
[8] | 宋丹阳, 郑红娟, 李一龙. 聚乳酸基油水分离材料研究进展[J]. 中国塑料, 2022, 36(9): 187-192. |
[9] | 曲玉婷, 王立梅, 齐斌. 聚乙二醇对聚乳酸/淀粉纳米晶复合材料性能的影响[J]. 中国塑料, 2022, 36(8): 56-61. |
[10] | 徐杰, 钟进福, 童晓茜, 李广富, 付栋梁, 李城城. 端羧基修饰单宁酸/没食子酸环氧树脂复合材料的制备与性能研究[J]. 中国塑料, 2022, 36(7): 44-50. |
[11] | 沈雪梅, 朱小龙, 胡燕超, 宋任远, 张现峰, 李席. 静电喷雾法制备聚乳酸/布洛芬微球及其性能研究[J]. 中国塑料, 2022, 36(7): 61-67. |
[12] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[13] | 邵琳颖, 郗悦玮, 翁云宣. 可降解聚乳酸复合材料研究进展[J]. 中国塑料, 2022, 36(6): 155-164. |
[14] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
[15] | 李梦琪, 陈雅君. 纳米材料阻燃聚乳酸的研究进展[J]. 中国塑料, 2022, 36(4): 102-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||