1 |
Manfra L, Marengo V, Libralato G, et al. Biodegradable polymers: A real opportunity to solve marine plastic pollution?[J]. Journal of Hazardous Materials, 2021, 416: 125763.
|
2 |
Zhou L, Ke K, Yang M B, et al. Recent progress on chemical modification of cellulose for high mechanical⁃performance poly (lactic acid)/cellulose composite: a review[J]. Composites Communications, 2021, 23: 100548.
|
3 |
Rigotti D, Soccio M, Dorigato A, et al. Novel biobased polylactic acid/poly (pentamethylene 2,5⁃furanoate) blends for sustainable food packaging[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13 742⁃13 750.
|
4 |
Zuo M D, Pan N Y, Liu Q J, et al. Three⁃dimensionally printed polylactic acid/cellulose acetate scaffolds with antimicrobial effect[J]. RSC advances, 2020, 10(5): 2 952⁃2 958.
|
5 |
Pretula J, Slomkowski S, Penczek S. Polylactides⁃methods of synthesis and characterization[J]. Advanced Drug Delivery Reviews, 2016, 107: 3⁃16.
|
6 |
Mondal K, Sakurai S, Okahisa Y, et al. Effect of cellulose nanocrystals derived from dunaliella tertiolecta marine green algae residue on crystallization behaviour of poly (lactic acid) [J]. Carbohydrate Polymers, 2021, 261: 117881.
|
7 |
董茂林, 陈李栋, 黄六莲, 等. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023: 1⁃17.
|
|
DONG M L, CHEN L D, HUANG L L, et al. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications[J]. CIESC Journal, 2023: 1⁃17.
|
8 |
Trifol J, Quintero DCM, Moriana R. Pine cone biorefinery: integral valorization of residual biomass into lignocellulose nanofibrils (LCNF)⁃reinforced composites for packaging[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(5): 2 180⁃2 190.
|
9 |
Chihaoui B, Tarres Q, Delgado⁃Aguilar M, et al. Lignin⁃containing cellulose fibrils as reinforcement of plasticized PLA biocomposites produced by melt processing using PEG as a carrier[J]. Industrial Crops and Products, 2022, 175: 114287.
|
10 |
Xu Y Z, Zheng D Y, Chen X J, et al. Mussel⁃inspired polydopamine⁃modified cellulose nanocrystal fillers for the preparation of reinforced and UV⁃shielding poly (lactic acid) films[J]. Journal of Materials Research and Technology, 2022, 19: 4 350⁃4 359.
|
11 |
Yan W T, Shi M Q, Dong C X, Applications of tannic acid in membrane technologies : a review[J]. Advances in Colloid and Interface Science, 2020, 284: 102267.
|
12 |
Sileika T S, Barrett D G, Zhang R, et al. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine[J]. Angewandte Chemie International Edition, 2013, 52(41): 10 766⁃10 770.
|
13 |
国家质量监督检验检疫总局和国家标准化管理委员会. 塑料拉伸性能的测试 第3部分: 薄膜和薄片的试验条件 [S]. 北京: 中国标准出版社, 2006.
|
14 |
杨 旭, 方 健, 覃 敏, 等. 壳聚糖/结冷胶双层膜制备工艺优化及表征[J]. 中国塑料, 2022, 36(11): 14⁃23.
|
|
YANG X, FANG J, QIN M, et al. Preparation process optimization and characterization of chitosan/gellan gum bilayer films[J]. China Plastics, 2022, 36(11): 14⁃23.
|
15 |
Shang H, Xu K K, Li X Y, et al. UV⁃protective and high⁃transparency poly (lactic acid) biocomposites for ecofriendly packaging of perishable fruits[J]. International Journal of Biological Macromolecules, 2022, 222: 927⁃937.
|
16 |
Hu Z, Berry R M, Pelton R, et al. One⁃pot water⁃based hydrophobic surface modification of cellulose nanocrystals using plant polyphenols[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5 018⁃5 026.
|
17 |
Li B, Whalen J J, Humayun M S, et al. Reversible bioadhesives using tannic acid primed thermally⁃responsive polymers[J]. Advanced Functional Materials, 2020, 30(5): 1907478.
|
18 |
Xiang H S, Wang B C, Zhong M Q, et al. Sustainable and versatile superhydrophobic cellulose nanocrystals[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(18): 5 939⁃5 948.
|
19 |
Sunanda R, Zhai L D, Hai L V, et al. One⁃step nanocellulose coating converts tissue paper into an efficient separation membrane[J]. Cellulose, 2018, 25(9): 4 871⁃4 886.
|
20 |
Ali A, Yu L, Liu H S, et al. Preparation and characterization of starch⁃based composite films reinforced by corn and wheat hulls[J]. Journal of Applied Polymer Science, 2017, 134(32): 45159.
|
21 |
Yue Y Y, Zhou C J, French A D, et al. Comparative properties of cellulose nano⁃crystals from native and mercerized cotton fibers[J]. Cellulose, 2012, 19(4): 1 173⁃1 187.
|
22 |
Huang Y X, Lin Q Q, Yu Y L, et al. Functionalization of wood fibers based on immobilization of tannic acid and in situ complexation of Fe (Ⅱ) ions[J]. Applied Surface Science, 2020, 510: 145436.
|
23 |
Majdoub M, Essamlali Y, Amadine O, et al. Octadecylamine as chemical modifier for tuned hydrophobicity of surface modified cellulose: toward organophilic cellulose nanocrystals[J]. Cellulose, 2021, 28(12): 7 717⁃7 734.
|
24 |
Santos F A, Iulianelli G C V, Tavares M I S, Effect of microcrystalline and nanocrystals cellulose fillers in materials based on PLA matrix[J]. Polymer Testing, 2017, 61: 280⁃288.
|
25 |
Wang X, Jia Y, Liu Z, et al. Influence of the lignin content on the properties of poly (lactic acid)/lignin⁃containing cellulose nanofibrils composite films[J]. Polymers, 2018, 10(9): 1 013.
|
26 |
姜秀龙. 强韧耐热聚乳酸纳米复合膜材料制备及性能研究[D]. 东华大学, 2022.
|
27 |
Yang W J, Dominici F, Fortunati E, et al. Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly (lactic) acid films: effect of cellulose nanocrystals and a masterbatch process[J]. RSC Advances, 2015, 5(41): 32 350⁃32 357.
|
28 |
Yetis F, Liu, X Q, Sampson W, et al. Acetylation of lignin containing microfibrillated cellulose and its reinforcing effect for polylactic acid[J]. European Polymer Journal, 2020, 134: 109803.
|
29 |
Kai D, Zhang K Y, Jiang L, et al. Sustainable and antioxidant lignin⁃polyester copolymers and nanofibers for potential healthcare applications[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6 016⁃6 025.
|
30 |
Leite L S F, Pham C, Bilatto S, et al. Effect of tannic acid and cellulose nanocrystals on antioxidant and antimicrobial properties of gelatin films[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(25): 8 539⁃8 549.
|
31 |
Sun C, Li C X, Li H Y, et al. Modified cellulose nanocrystals enhanced the compatibility between PLA and PBAT to prepare a multifunctional composite film[J]. Journal of Polymers and the Environment, 2022,30(8): 3 139⁃3 149.
|
32 |
Cui B Y, Liu L X, Li S, et al. Bio⁃inspired, UV⁃blocking, water⁃stable and antioxidant lignin/cellulose films combining high strength, toughness and flexibility[J]. Materials Chemistry Frontiers, 2023, 7(5): 897⁃905.
|
33 |
Park S Y, Kim J Y, Youn H J, et al. Utilization of lignin fractions in UV resistant lignin⁃PLA biocomposites via lignin⁃lactide grafting[J]. International Journal of Biological Macromolecules, 2019, 138: 1 029⁃1 034.
|
34 |
Nair S S, Chen H Y, Peng Y, et al. Polylactic acid biocomposites reinforced with nanocellulose fibrils with high lignin content for improved mechanical, thermal, and barrier properties[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10 058⁃10 068.
|