
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (3): 116-125.DOI: 10.19491/j.issn.1001-9278.2024.03.019
收稿日期:
2023-06-27
出版日期:
2024-03-26
发布日期:
2024-03-28
通讯作者:
陈雅君,chenyajun@th.btbu.edu.cn基金资助:
HAO Jinling, CHEN Yajun(), QIAN Lijun(
)
Received:
2023-06-27
Online:
2024-03-26
Published:
2024-03-28
Contact:
CHEN Yajun, QIAN Lijun
E-mail:chenyajun@th.btbu.edu.cn;qianlj@th.btbu.edu.cn
摘要:
综述了近年来国内外硅系气凝胶、有机气凝胶和碳系气凝胶在阻燃领域的研究进展。概述了气凝胶的特点、在阻燃领域的相关阻燃改性技术及其对材料阻燃性能的影响。总结了各种气凝胶的优缺点及未来发展趋势。
中图分类号:
郝金灵, 陈雅君, 钱立军. 气凝胶在阻燃领域的研究进展[J]. 中国塑料, 2024, 38(3): 116-125.
HAO Jinling, CHEN Yajun, QIAN Lijun. Research progress in application of aerogel in flame retardant field[J]. China Plastics, 2024, 38(3): 116-125.
样品 | TTI/s | TTPHRR/s | PHRR/kW·m-2 | THR/MJ·kW-1 |
---|---|---|---|---|
TEOS/HA | 4 | 56 | 48.25 | 5.49 |
SS/HA | 7 | 51 | 45.35 | 3.05 |
SS/PA | 6 | 52 | 40.35 | 2.73 |
样品 | TTI/s | TTPHRR/s | PHRR/kW·m-2 | THR/MJ·kW-1 |
---|---|---|---|---|
TEOS/HA | 4 | 56 | 48.25 | 5.49 |
SS/HA | 7 | 51 | 45.35 | 3.05 |
SS/PA | 6 | 52 | 40.35 | 2.73 |
1 | 陈龙武, 甘礼华. 气凝胶[J]. 化学通报, 1997(08): 22⁃28. |
CHEN L W, GAN L H, Aerogel[J]. Chemistry, 1997(08): 22⁃28. | |
2 | 樊肖雄, 张光磊, 徐 亮, 等. 气凝胶的阻燃性能研究进展[J]. 硅酸盐通报, 2020, 39(5): 7. |
FAN X X, ZHANG G L, XU L, et al. Research progress on flame retardant properties of aerogels[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 7. | |
3 | KISTLER S. S. Coherent Expanded Aerogels[J]. Rubber Chemistry and Technology, 1932, 5(4):600⁃603. |
4 | 崔艳东, 王 亮, 张格青, 等. 疏水型二氧化硅气凝胶复合材料的制备及其性能[J]. 纺织高校基础科学学报, 2021,34(4): 119⁃125. |
CUI Y D, W L, ZHANG G Q, et al. Preparation and properties of hydrophobic silica aerogel composites[J]. Basic Sciences Journal of Textile Universities, 2021,34(4):119⁃125. | |
5 | LAMY⁃MENDES A, SILVA R F, et al. Advances in carbon nanostructure⁃silica aerogel composites: a review[J]. Journal of Materials Chemistry A, 2018, 6(4): 1 340⁃1 369. |
6 | ZHI L, CHENG X D, GONG L L, et al. Flammability and oxidation kinetics of hydrophobic silica aerogels[J]. Journal of Hazardous Materials, 2016, 320:350⁃358. |
7 | ZHI L, CHENG X D, GONG L L, et al. Enhanced flame retardancy of hydrophobic silica aerogels by using sodium silicate as precursor and phosphoric acid as catalyst[J]. Journal of Non⁃Crystalline Solids, 2018, 481: 267⁃275. |
8 | Duan D, Gao X D, Dong Y B, et al. Green Preparation of Thermal⁃Insulative, Flame Retardant, and Hydrophobic Silica Aerogel Reinforced Poly(vinyl alcohol) Composites[J]. ACS Applied Polymer Materials, 2022,4(10): 7 352⁃7 362. |
9 | LEE H, LEE D, CHO J, et al. Super⁃insulating, flame⁃retardant, and flexible poly(dimethylsiloxane)composites based on silica aerogel[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 108⁃113. |
10 | LAOUTID F, BONNAUD L, AlEXANDRE M, et al. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites[J]. Materials Science & Engineering R Reports, 2009, 63(3): 100⁃125. |
11 | PEKALA R W, KONG F M. Resorcinol⁃formaldehyde aerogels and their carbonized derivatives[J]. Abstracts of Papers of the American Chemical Society, 1989, 197(10): 113. |
12 | 段一凡, 张光磊, 史新月,等. 纤维素气凝胶的制备与应用研究进展[J]. 陶瓷学报, 2021, 42(1): 8. |
DUAN Y F, ZHANG G L, SHI X Y, et al. Research progress in preparation and application of cellulose aerogels[J]. Journal of Ceramics, 2021, 42(1): 8. | |
13 | 党 力, 吕智慧. 无机阻燃剂的研究进展[J]. 中国塑料, 2018, 32(09): 7⁃14. |
DANG L, LV Z H. Research progress on inorganic flame retardants[J]. China Plastics, 2018, 32(09): 7⁃14. | |
14 | Han Y, Zhang X, Wu X, et al. Flame Retardant, Heat Insulating Cellulose Aerogels from Waste Cotton Fabrics by in Situ Formation of Magnesium Hydroxide Nanoparticles in Cellulose Gel Nanostructures[J]. Acs Sustainable Chemistry & Engineering, 2015, 3(8): 1 853⁃1 859. |
15 | HE C, HUANG J Y, LI S H, et al. Mechanically resistant and sustainable cellulose⁃based composite aerogels with excellent flame retardant, sound⁃absorption, and superantiwetting ability for advanced engineering materials[J]. ACS Sustainable Chemistry & Engineering,2017, 6(1):927⁃ 936. |
16 | FAN B T, CHEN S J, YAO Q F, et al. Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation[J].MATERIALS, 2017, 10(3): 311. |
17 | YANG L, MUKHOPADHYAY A, JIAO Y C, et al. Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two⁃dimensional MoS2[J]. Nanoscale, 2017, 9(32): 11 452⁃11 462. |
18 | 罗 静. TiO2/纤维素气凝胶复合多功能保温材料的制备与性能研究[D]. 昆明:昆明理工大学, 2019. |
19 | Wang L, Sánchez⁃Soto M. Green bio⁃based aerogels prepared from recycled cellulose fiber suspensions[J]. Rsc Advances, 2015, 5(40): 396⁃417. |
20 | HUANG Y, ZHOU T, HE S, et al. Flame⁃retardant polyvinyl alcohol/cellulose nanofibers hybrid carbon aerogel by freeze drying with ultra⁃low phosphorus[J]. Applied Surface Science, 2019, 497:143775. |
21 | GUO W W, WANG X, et al. Nano⁃fibrillated cellulose⁃hydroxyapatite based composite foams with excellent fire resistance[J]. Carbohydrate Polymers, 2018, 196: 71⁃78. |
22 | DU X, QIU J, DENG S, et al. Flame⁃retardant and form⁃stable phase change composites based on black phosphorus nanosheets/cellulose nanofiber aerogels with extremely high energy storage density and superior solar⁃thermal conversion efficiency[J]. Journal of Materials Chemistry A, 2020, 8(28): 14 126⁃14 134. |
23 | GUPTA P, VERMA C, et al. Flame retardant and thermally insulating clay based aerogel facilitated by cellulose nanofibers[J]. Journal of Supercritical Fluids, 2019, 152:104537. |
24 | CAO C, YUAN B. Thermally induced fire early warning aerogel with efficient thermal isolation and flame‐retardant properties[J]. Polymers for Advanced Technologies, 2021, 32(5): 2 159⁃2 168. |
25 | HUANG J, WANG X, GUO W, et al. Eco⁃friendly thermally insulating cellulose aerogels with exceptional flame retardancy, mechanical property and thermal stability[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131: 104159. |
26 | YUE X P, ZHANG S Q, HE J, et al. Fabrication of Flame Retarded Cellulose Aerogel with Hydrophobicity via MF/MTMS Double Cross⁃Linking[J]. Journal of Natural Fibers, 2022, 20(1): 2133053. |
27 | GUO L M, WANG F, LI H Y. Preparation and characterization of cellulose nanofiber/melamine⁃urea⁃formaldehyde composite aerogels for thermal insulation applications[J]. Polymer Composites, 2022, 43(11): 7 882⁃7 892. |
28 | KOKLUKAYA O, CAROSIO F, WABERG L. Superior Flame⁃Resistant Cellulose Nanofibril Aerogels Modified with Hybrid Layer⁃by⁃Layer Coatings[J]. Acs Applied Materials & Interfaces, 2017, 9(34): 29 082⁃29 092. |
29 | HUANG Y, ZHOU P, ZHANG X X. Green synthesis of Ag⁃doped cellulose aerogel for highly sensitive, flame retardant strain sensors[J]. Cellulose, 2022, 29(16): 8 719–8 731. |
30 | 郭真有, 张 萍, 曹艳霞,等. 聚乙烯醇无卤阻燃研究进展[J]. 高分子通报, 2018, 231(7): 50⁃57. |
GUO Y Z, ZHANG P, CAO Y X, Research progress in halogen⁃free flame retardancy of polyvinyl alcohol[J]. Polymer Bulletin, 2018, 231(7): 50⁃57. | |
31 | SHANG K, YE D D, KANG A H, et al. Robust and fire retardant borate⁃crosslinked poly (vinyl alcohol)/montmorillonite aerogel via melt⁃crosslink[J]. Polymer, 2017, 131: 111⁃119. |
32 | WU N J, DENG S S, WANG F, et al. Highly Efficient Flame⁃Retardant and Enhanced PVA⁃Based Composite Aerogels through Interpenetrating Cross⁃Linking Networks[J]. Polymers, 2023, 15(3): 657. |
33 | WU N J, NIU F K, LANG W C, et al. Highly efficient flame⁃retardant and low⁃smoke⁃toxicity poly(vinyl alcohol)/alginate/montmorillonite composite aerogels by two⁃step crosslinking strategy[J]. Carbohydrate Polymers, 2019, 221: 221⁃230. |
34 | ZHANG Q R, WANG X Y, TAO X J, et al. Polyvinyl alcohol composite aerogel with remarkable flame retardancy, chemical durability and self⁃cleaning property[J]. Composites Communications, 2019, 15: 96⁃102. |
35 | WANG L, SÁNCHEZ⁃SOTO M, MASPOCH M L. Polymer/clay aerogel composites with flame retardant agents: Mechanical, thermal and fire behavior[J]. Materials & Design, 2013, 52: 609⁃614. |
36 | WANG Y T, LIAO S F, SHANG K, et al. Efficient approach to improving the flame retardancy of poly(vinyl alcohol)/ clay aerogels: Incorporating piperazine⁃modified ammonium polyphosphate[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1 780⁃1 786. |
37 | KANG A H, SHANG K, YE D D, et al. Rejuvenated fly ash in poly(vinyl alcohol)⁃based composite aerogels with high fire safety and smoke suppression[J]. The Chemical Engineering Journal, 2017, 327: 992⁃999. |
38 | WEI J X, ZHAO C X, LI Y C, et al. A simple and green strategy for preparing poly(vinyl alcohol)/phosphate cellulose aerogel with enhanced flame‐retardant properties[J].Polymer Engineering & Science, 2020, 61(3): 693⁃705. |
39 | GROULT S, BUDTOVA T. Thermal conductivity/structure correlations in thermal super⁃insulating pectin aerogels[J]. Carbohydrate Polymers, 2018, 196: 73⁃81. |
40 | RUDAZ C, COURSON R, BONNNET L, et al. Aeropectin: Fully Biomass⁃Based Mechanically Strong and Thermal Superinsulating Aerogel[J]. Biomacromolecules, 2014, 15(6): 2 188⁃2 195. |
41 | CHEN H B, CHIOU B S, WANG Y Z. Biodegradable Pectin/Clay Aerogels[J]. ACS Applied Materials & Interfaces, 2013, 5(5):1 715⁃1 721. |
42 | ZHAO H B, CHEN M, CHEN H B. Thermally Insulating and Flame⁃Retardant Polyaniline/Pectin Aerogels[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7 012⁃7 019. |
43 | WANG H, LIU J X, LI M G, et al. Fully biobased aerogels with high strength and flame retardancy[J]. Chemical Research and Application, 2019, 31(7): 1 335⁃1 341. |
44 | YANG W, YUEN A C Y, PING P, et al. Pectin⁃assisted dispersion of exfoliated boron nitride nanosheets for assembled bio⁃composite aerogels[J]. Composites Part A⁃Applied Science and Manufacturing, 2019, 121: 525⁃525. |
45 | TIAN J, YANG Y, XUE T T, et al. Highly Flexible and Compressible Polyimide/Silica Aerogels with Integrated Double Network for Thermal Insulation and Fire⁃Retardancy[J]. Journal of Materials Science & Technology, 2022, 105: 194⁃202. |
46 | LIU T, LIANG F W, CHEN S, et al. Aramid reinforced polyimide aerogel composites with high⁃mechanical strength for thermal insulation material[J]. Ploymers for Advanced Technologies, 2023, 34(5): 1 769⁃1 776. |
47 | JIANG C C, CHEN J Y, LAI X J, et al. Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection[J]. Chemical Engineering Journal, 2022, 434: 134630. |
48 | ZUO L Z, FAN W, ZHANG Y F, et al. Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame⁃retardant performance[J]. Composites Science & Technology, 2017, 139:57⁃63. |
49 | ZHANG J J, JI Q, SHEN X H, et al. Pyrolysis products and thermal degradation mechanism of intrinsically flame⁃retardant calcium alginate fibre[J]. Polymer Degradation and Stability,2011, 96(5): 936⁃942. |
50 | HAN X H, DING S Q, ZHU L J, et al. Preparation and characterization of flame⁃retardant and thermal insulating bio⁃based composite aerogels[J]. Energy and Buildings, 2023, 278: 112656. |
51 | 李欣儡. 基于藻酸盐的阻燃气凝胶制备及其性能研究[D]. 西华大学, 2019. |
52 | 蒋伟阳, 沈 军. CRF气凝胶的结构特性研究[J]. 功能材料, 1996, 27(4): 3. |
JIANG W Y, SHEN J. Investigation of structural properties of CRF aerogels[J]. Journal of Functional Materials, 1996, 27(4): 3. | |
53 | WAN C C, LU L, JIAO C D, et al. Fabrication of hydrophobic, electrically conductive and flame⁃resistant carbon aerogels by pyrolysis of regenerated cellulose aerogels[J]. Carbohydrate Polymers, 2015, 118: 115⁃118. |
54 | 魏燕红. 多功能碳气凝胶的结构与性能研究[D]. 四川师范大学, 2018. |
[1] | 张俊, 奚望, 钱立军, 周凤帅, 邱勇, 王靖宇, 张志鹏. 氮化硼/磷杂菲三嗪化合物阻燃导热聚碳酸酯复合材料的制备及其性能研究[J]. 中国塑料, 2024, 38(3): 31-37. |
[2] | 徐锦佳, 黄腾, 柏志成, 沈佳豪, 谢清怡, 朱俊辉, 戴进峰, 刘元强, 詹先旭. 壳聚糖⁃磺化石墨烯层层自组装涂层对硬质聚氨酯泡沫的阻燃抑烟性能研究[J]. 中国塑料, 2024, 38(3): 38-43. |
[3] | 郝金灵 陈雅君 钱立军. 气凝胶在阻燃领域的研究进展[J]. , 2024, 38(3): 116-125. |
[4] | 孔子萌, 张简, 邓雅馨, 徐雪玲, 陈雅君. 阻燃聚丁二酸丁二醇酯的研究进展[J]. 中国塑料, 2024, 38(2): 105-117. |
[5] | 王栋. 金属有机框架基阻燃剂在阻燃领域的研究进展[J]. 中国塑料, 2024, 38(2): 118-125. |
[6] | 贾梦, 许准, 魏思淼, 张庆磊, 许博. 建筑用泡沫材料阻燃研究进展[J]. 中国塑料, 2024, 38(2): 52-60. |
[7] | 佟亚轩, 高海南, 陈礼平, 翁云宣. 生物基气凝胶的改性及功能化研究进展[J]. 中国塑料, 2024, 38(2): 87-94. |
[8] | 赵晓波, 王国泰, 梁淑君. 聚硅氧烷包覆改性聚磷酸铵及其阻燃聚乙烯性能的研究[J]. 中国塑料, 2024, 38(1): 86-91. |
[9] | 张慈海, 刘松, 周冬晴, 陈宇, 张婷婷, 钟柳, 刘治国. DOPO基反应型阻燃剂的合成与应用研究进展[J]. 中国塑料, 2023, 37(9): 64-74. |
[10] | 宫芳芳 陶梦伟 王靖宇 钱立军. 无卤阻燃热塑性聚烯烃弹性体的研究进展[J]. , 2023, 37(6): 123-130. |
[11] | 刘会媛 马闯 关俊霞 李繁麟 杨笑春 张青. 磷化瓜尔胶与APP协同阻燃PLA的性能研究[J]. , 2023, 37(4): 53-59. |
[12] | 黄雅婷, 李连良, 张翼, 汤维, 钱立军. 水性膨胀型钢结构防火涂料研究进展[J]. 中国塑料, 2023, 37(2): 77-89. |
[13] | 张建忠, 方杨, 张旺斌, 黄腾, 俞友明, 戴进峰, 宋平安. 阻燃不饱和聚酯研究进展[J]. 中国塑料, 2023, 37(12): 115-123. |
[14] | 周子玉, 桑晓明, 耿旭, 陈兴刚. 含席夫碱结构热固性树脂的研究进展[J]. 中国塑料, 2023, 37(11): 163-169. |
[15] | 王林锋, 谢继凯, 郭家杏, 郝智, 郭建兵, 龙晓琴, 敖钱兰, 朱妍, 伍明蜜. 氢氧化镁/氢氧化铝复配阻燃剂对可陶瓷化硅橡胶阻燃抗震性能的影响[J]. 中国塑料, 2023, 37(10): 125-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||