1 |
孟翔宇, 陈铭韵, 顾阿伦, 等. “双碳”目标下中国氢能发展战略[J]. 天然气工业, 2022, 42(4): 156⁃179.
|
|
MENG X Y, CHEN M Y, GU A L, et al. China's hydrogen development strategy in the context of double carbon targets[J]. Natural Gas Industry, 2022, 42(4): 156⁃179.
|
2 |
程一步. 2022年国内氢能产业发展动态及新政策对产业影响浅析[J]. 石油石化绿色低碳, 2022, 7(5): 1⁃6.
|
|
CHENG Y B. China's hydrogen energy industry development and new policy implications in 2022[J]. Green Petroleum & Petrochemicals, 2022, 7(5): 1⁃6.
|
3 |
陈明和, 胡正云, 贾晓龙, 等. Ⅳ型车载储氢气瓶关键技术研究进展[J].压力容器, 2020, 37(11): 39⁃50.
|
|
CHEN M H, HU Y Z, JIA X L, et al. Research progress on key technologies of type Ⅳ vehicle⁃mounted hydrogen storage vessel[J]. Pressure vessel technology, 2020, 37(11):39⁃50.
|
4 |
李厚补, 张学敏, 马相阳, 等. CH4在PVDF中的渗透特性及机理[J].塑料, 2021, 50(02): 72⁃76.
|
|
LI H B, ZHANG X M, MA X Y, et al. Permeation characteristic and mechanism of CH4 in polyvinylidene fluoride[J]. Plastics, 2021, 50(02): 72⁃76.
|
5 |
张学敏, 王品, 李厚补, 等. CH4在PVDF中渗透行为及机理的分子模拟研究[J].中国塑料, 2021, 35(03): 97⁃104.
|
|
ZHANG X M, WANG P, LI H B, et al. Molecular simulation of permeation behavior and mechanism of CH4 in PVDF[J]. China Plastics, 2021, 35(03): 97⁃104.
|
6 |
张冬娜, 丁楠, 张兆, 等. Ⅳ型瓶聚乙烯内胆材料氢渗透行为研究[J].新能源进展, 2022, 10(1): 15⁃19.
|
|
ZHANG D N, DING N, ZHANG Z, et al. Hydrogen permeation behavior of polyethylene liner for type IV vessel[J]. Advances in New and Renewable Energy, 2022, 10(1): 15⁃19.
|
7 |
Fujiwara Hirotada, Ono Hiroaki, Ohyama Keiko, et al. Hydrogen permeation under high pressure conditions and the destruction of exposed polyethylene⁃property of polymeric materials for high⁃pressure hydrogen devices (2)⁃ [J]. International Journal of Hydrogen Energy, 2021, 46(21): 11 832⁃11 848.
|
8 |
Kanesugi Hiroyuki, Ohyama Keiko, Fujiwara Hirotada, et al. High⁃pressure hydrogen permeability model for crystalline polymers[J]. International Journal of Hydrogen Energy, 2023, 48(2):723⁃739.
|
9 |
Yu Sun, Hong Lv, Wei Zhou, et al. Research on hydrogen permeability of polyamide 6 as the liner material for type Ⅳ hydrogen storage tank[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24 980⁃24 990.
|
10 |
Humpenöder Jens. Gas permeation of fibre reinforced plastics[J]. Cryogenics, 1998, 38(1): 143⁃147.
|
11 |
Pepin Julie, Lainé Eric, Grandidier Jean⁃Claude, et al. Determination of key parameters responsible for polymeric liner collapse in hyperbaric type IV hydrogen storage vessels[J]. International Journal of Hydrogen Energy, 2018, 43(33): 16 386⁃16 399.
|
12 |
Marie⁃Hélène Klopffer, Philippe Berne, Mathilde Weber, et al. New materials for hydrogen distribution networks: materials development & technico⁃economic benchmark[J]. Defect and Diffusion Forum, 2012, 323/325: 407⁃412.
|
13 |
李永青. Ⅳ型储氢瓶内胆材料HDPE/MMT阻隔性能研究[D]. 北京:北京化工大学, 2022.
|
14 |
Mozaffari Farkhondeh, Eslami Hossein, Moghadasi Jalil. Molecular dynamics simulation of diffusion and permeation of gases in polystyrene[J]. Polymer, 2010, 51: 300⁃307.
|
15 |
Yoshinori Kamiya, Naito Yasutoshi, Terada Katsuhiko, et al. Volumetric properties and interaction parameters of dissolved gases in poly(dimethylsiloxane) and polyethylene [J]. Macromolecules, 2000, 33(8): 3 111⁃3 119.
|
16 |
Pant Boyd. Molecular packing and diffusion in polyisobutylene[J]. Macromolecules, 1991, 24, 6 325⁃6 331.
|
17 |
何曼君, 张红东, 陈维孝, 等.高分子物理第三版[M]. 上海: 复旦大学出版社, 2008.
|
18 |
Wypych George. Handbook of polymers (second edition) [M]. ChemTec Publishing, 2016.
|
19 |
Zheng Dukui, Li Jingfa, Liu Bing, et al. Molecular dynamics investigations into the hydrogen permeation mechanism of polyethylene pipeline material [J]. Journal of Molecular Liquids, 2022, 368: 1⁃16.
|
20 |
Klopffer M, Flaconnèche B. Transport properties of gases in polymers: bibliographic review [J]. Oil & Gas Science and Technology, 2006, 56(3): 223⁃244.
|
21 |
Sato Yoshiyuki, Yurugi Masashi, Fujiwara Koji, et al. Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure[J]. Fluid Phase Equilibria, 1996, 125(1/2): 129⁃138.
|
22 |
Yoshiyuki Sato, Kijo Fujiwara, Tadao Takikawa, et al. Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high⁃density polyethylene, and polystyrene under high pressures and temperatures[J]. Fluid Phase Equilibria, 1999, 162(1/2): 261⁃276.
|
23 |
袁俊鹏, 刘秀英, 李晓东, 等. 沸石分子筛对CH4/H2的吸附与分离性能[J]. 物理学报, 2021, 70(15): 156801.
|
|
YUAN J P, LIU X Y, LI X D, et al. Molecular simulation for adsorption and separation of CH4/H2 in zeolites[J]. Acta Physica Sinica, 2021, 70(15): 156801.
|
24 |
Xiang JianHua, Zeng FanGui, Liang HuZhen, et al. Molecular simulation of the CH4/CO2/H2O adsorption onto the molecular structure of coal[J]. Science China Earth Sciences, 2014, 57: 1 749⁃1 759.
|
25 |
Yi Yong, Bi Peng, Zhao Xiaofeng, et al. Molecular dynamics simulation of diffusion of hydrogen and its isotopic molecule in polystyrene [J]. Journal of Polymer Research, 2018, 25(2): 1⁃6.
|
26 |
Kanesugi Hiroyuki, Ohyama Keiko, Fujiwara Hirotada, et al. High⁃pressure hydrogen permeability model for crystalline polymers [J]. International Journal of Hydrogen Energy, 2023, 48(2): 723⁃739.
|
27 |
Zhang Xuemin, Chu Huifang, Li Houbu, et al. Permeation vharacteristics of CH4 in PVDF with crude oil⁃containing [J]. Polymers, 2022, 14(13):1⁃12.
|