1 |
Hsu H Y, Hsieh H H, Tuan H Y, et al. Oxidized low density polyethylene: a potential cost⁃effective, stable, and recyclable polymeric encapsulant for photovoltaic modules[J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 955⁃959.
|
2 |
Pan K, Zeng X, Li H, et al. Synthesis of an adhesion⁃enhancing polyhydrosiloxane containing acrylate groups and its cross⁃linked addition⁃cure silicone encapsulant[J]. Journal of Elastomers & Plastics, 2015, 47(5): 416⁃430.
|
3 |
Pan K, Zeng X, Li H, et al. Synthesis of siloxanes containing vinyl and epoxy group and its enhancement for adhesion of addition⁃cure silicone encapsulant[J]. Journal of Macromolecular Science, Part A, 2013, 50(11): 1 126⁃1 132.
|
4 |
Hirschl C, Biebl⁃Rydlo M, DeBiasio M, et al. Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—a comparative study[J]. Solar Energy Materials and Solar Cells, 2013, 116: 203⁃218.
|
5 |
Adothu B, Bhatt P, Chattopadhyay S, et al. Newly developed thermoplastic polyolefin encapsulant⁃a potential candidate for crystalline silicon photovoltaic modules encapsulation[J]. Solar Energy, 2019, 194: 581⁃588.
|
6 |
文劲松.塑料薄膜之光伏背板市场分析[J].中国塑料,2022,36(12):71⁃77.
|
|
WEN J S.Market analysis of photovoltaic backsheets based on plastic films[J].China Plastics,2022,36(12):71⁃77.
|
7 |
de Oliveira M C C, Cardoso A S A D, Viana M M, et al. The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2 299⁃2 317.
|
8 |
Tábi T. The application of the synergistic effect between the crystal structure of poly (lactic acid)(PLA) and the presence of ethylene vinyl acetate copolymer (EVA) to produce highly ductile PLA/EVA blends[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(2): 1 287⁃1 297.
|
9 |
Yang G, Wu W, Dong H, et al. Synergistic flame⁃retardant effects of aluminum phosphate and Trimer in ethylene–vinyl acetate composites[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132: 919⁃926.
|
10 |
Meena R, Kumar S, Gupta R. Comparative investigation and analysis of delaminated and discolored encapsulant degradation in crystalline silicon photovoltaic modules[J]. Solar Energy, 2020, 203: 114⁃122.
|
11 |
Hasan O, Arif A F M. Performance and life prediction model for photovoltaic modules: effect of encapsulant constitutive behavior[J]. Solar Energy Materials and Solar Cells, 2014, 122: 75⁃87.
|
12 |
Oreski G, Omazic A, Eder G C, et al. Properties and degradation behaviour of polyolefin encapsulants for photovoltaic modules[J]. Progress in Photovoltaics: Research and Applications, 2020, 28(12): 1 277⁃1 288.
|
13 |
Buerhop C, Pickel T, Stroyuk O, et al. An insight into a combined effect of backsheet and EVA encapsulant on field degradation of PV modules[J]. Energy Science & Engineering, 2023, 11(11): 4 168⁃4 180.
|
14 |
Fiandra V, Sannino L, Andreozzi C, et al. New PV encapsulants: assessment of change in optical and thermal properties and chemical degradation after UV aging[J]. Polymer Degradation and Stability, 2024, 220: 110643.
|
15 |
Segbefia O K, Imenes A G, Saetre T O. Moisture ingress in photovoltaic modules: a review[J]. Solar Energy, 2021, 224: 889⁃906.
|
16 |
朱子轩,刘海芬,范家钊,等.光伏背板粘接材料和共挤粘接技术研究进展[J].中国塑料,2022,36(7):174⁃186.
|
|
ZHU Z X, LIU H F, FAN J Z,et al. Research progress of adhesive materials and co⁃extrusion adhesion technology for photovoltaic backsheet[J].China Plastics,2022,36(7):174⁃186.
|
17 |
Omazic A, Oreski G, Halwachs M, et al. Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: a literature review[J]. Solar energy materials and solar cells, 2019, 192: 123⁃133.
|
18 |
Mahmood Q, Zeng Y, Yue E, et al. Ultra⁃high molecular weight elastomeric polyethylene using an electronically and sterically enhanced nickel catalyst[J]. Polymer Chemistry, 2017, 8(41): 6 416⁃6 430.
|
19 |
Mahmood Q, Sun W H. N, N⁃chelated nickel catalysts for highly branched polyolefin elastomers: a survey[J]. Royal Society Open Science, 2018, 5(7): 180367.
|
20 |
Park J H, Hwang S H. Construction and characterization of polyolefin elastomer blends with chemically modified hydrocarbon resin as a photovoltaic module encapsulant[J]. Polymers, 2022, 14(21): 4 620.
|
21 |
Landa⁃Pliquet M, Béjat T, Serasset M, et al. Enhancing photovoltaic modules encapsulation: Optimizing lamination processes for Polyolefin Elastomers (POE) through crosslinking behavior analysis[J]. Solar Energy Materials and Solar Cells, 2024, 267: 112725.
|
22 |
Hirschl C, Biebl–Rydlo M, DeBiasio M, et al. Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—a comparative study[J]. Solar Energy Materials and Solar Cells, 2013, 116: 203⁃218.
|
23 |
Schulze S H, Apel A, Daßler D, et al. Cure state assessment of EVA⁃copolymers for PV⁃applications comparing dynamic⁃mechanical, dielectric and calorimetric properties[J]. Solar Energy Materials and Solar Cells, 2015, 143: 411⁃417.
|
24 |
Mohanty T R, Ashidha M D, Ramakrishnan S, et al. Influence of oligomeric resins on natural rubber⁃carbon black⁃silica composites for tire tread application[J]. Journal of Industrial and Engineering Chemistry, 2024, 130: 278⁃296.
|
25 |
Baiamonte M, Therias S, Gardette J L, et al. Encapsulant polymer blend films for bifacial heterojunction photovoltaic modules: formulation, characterization and durability[J]. Polymer Degradation and Stability, 2021, 193: 109716.
|
26 |
Kong W S, Ju T J, Park J H, et al. Modification of biaxially oriented polypropylene films using dicyclopentadiene based hydrogenated hydrocarbon resin[J]. Journal of Polymer Engineering, 2015, 35(9): 859⁃866.
|
27 |
Class J B, Chu S G. The viscoelastic properties of rubber–resin blends. I. The effect of resin structure[J]. Journal of Applied Polymer Science, 1985, 30(2): 805⁃814.
|
28 |
Lin B, Zheng C, Zhu Q, et al. A polyolefin encapsulant material designed for photovoltaic modules: from perspectives of peel strength and transmittance[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140: 2 259⁃2 265.
|