
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2025, Vol. 39 ›› Issue (4): 84-91.DOI: 10.19491/j.issn.1001-9278.2025.04.015
储星宇2(), 方芳1,2(
), 徐润泽2, 王苏娜2, 操家顺1,2
收稿日期:
2024-06-24
出版日期:
2025-04-26
发布日期:
2025-04-23
通讯作者:
方芳(1982-),女,博士,教授,研究方向为污水处理及资源化,ffang65@hhu.edu.cn作者简介:
储星宇(1998-),女,硕士研究生,研究方向为污水处理及资源化,cxy10023458@163.com
CHU Xingyu2(), FANG Fang1,2(
), XU Runze2, WANG Suna2, CAO Jiashun1,2
Received:
2024-06-24
Online:
2025-04-26
Published:
2025-04-23
Contact:
FANG Fang
E-mail:cxy10023458@163.com;ffang65@hhu.edu.cn
摘要:
聚羟基脂肪酸酯(PHA)作为一种可生物降解的生物塑料,具有理化性质与传统塑料相似且对环境友好的特点,已逐渐成为传统塑料的替代品。在PHA制品使用寿命结束之后,应当考虑对PHA废物进行合理地处置,以减轻环境压力。本文介绍了PHA的种类、性质与应用,综述了PHA在不同环境/过程中的生物降解情况、PHA生物降解过程中的关键微生物和酶、生物降解的机制以及与生物降解相关的标准,旨在为改善PHA制品生物降解性能和优化PHA废物管理和处置策略提供理论参考。
中图分类号:
储星宇, 方芳, 徐润泽, 王苏娜, 操家顺. 聚羟基脂肪酸酯在不同条件下的生物降解研究进展[J]. 中国塑料, 2025, 39(4): 84-91.
CHU Xingyu, FANG Fang, XU Runze, WANG Suna, CAO Jiashun. Research progress in biodegradation of polyhydroxyalkanoate (PHA) under different conditions[J]. China Plastics, 2025, 39(4): 84-91.
降解环境/过程 | 标准 | 测试条件 | 说明 |
---|---|---|---|
堆肥 | ISO 14855(2018) | 58±2 ℃ | 测试周期至少90天(不超过6个月),通过分析产生的CO2确定测试材料的最终好氧生物降解性 |
ASTM D5338(2015) | 58±2 ℃ | 测试周期为45天,通过测定测试材料的碳转化为CO2的百分比评估生物可降解性 | |
EN 14045(2012) | 在嗜热阶段,温度可达65 °C | 测试持续12周,在中试规模(140 L)好氧堆肥试验中评估包装材料的分解情况,测试材料与生物垃圾混合,并在实际堆肥条件下自发堆肥 | |
土壤 | ISO 17556(2019) | 25±2 ℃,黑暗或弱光,pH=6~8 | 测试周期为6个月(不超过两年),通过测量密闭呼吸计中的需氧量或CO2的释放量评估测试材料的生物降解水平 |
ASTM D5988(2018) | 20~28(±2) ℃ | 通过测量测试材料暴露在土壤中产生的CO2随时间的变化来确定好氧生物降解的程度 | |
淡水 | ISO 14851(2019) | SS=30~1 000 mg/L,20~25(±1)℃,黑暗或弱光,pH=7,测试材料浓度100~2 000 mg/L(以有机碳的形式) | 测试周期不超过2个月,通过呼吸计测定需氧量来评估测试材料在水介质中与活性污泥接触的好氧生物降解活性 |
ISO 14852(2021) | SS=30~1 000 mg/L,20~25(±1) ℃,pH=7,测试材料浓度100~2 000 mg/L(以有机碳的形式) | 测试周期不超过2个月,通过测定析出的CO2来评估测试材料在水介质中与活性污泥接触的好氧生物降解活性 | |
海洋 | ISO 18830(2016) | 15~25(±2) ℃(不超过28 ℃),黑暗或弱光,测试材料应为薄膜或片状,浓度170 mg/L ThOD或60 mg/L TOC | 测试周期不超过24个月,通过呼吸计测定需氧量来评估测试材料在海水和海底交界面的海洋沙质沉积物上沉降时的好氧生物降解活性 |
ISO 19679(2016) | 15~25(±2) ℃(不超过28 ℃),黑暗或弱光,测试材料应为薄膜或片状,浓度170 mg/L ThOD或60 mg/L TOC | 测试周期不超过2个月,通过测定产生的CO2来评估测试材料在海水和海底交界面的海洋沙质沉积物上沉降时的好氧生物降解活性 | |
ASTM D6691(2017) | 30±2 ℃ | 测试周期为10~90天,通过呼吸计测定含碳≥20 %的测试材料与至少10种已知的好氧海洋微生物或天然海水中存在的本地微生物种群接触后产生的CO2来评估好氧生物降解程度和速率 | |
厌氧水环境 | ISO 14853(2016) | TS=0.1 %~0.3 %,35±2 ℃,pH=6.8~7.2,测试材料浓度20~200 mg/L(以有机碳的形式),总体积0.1~1 L | 通过测定沼气产量来评估厌氧生物降解程度 |
厌氧消化 | ISO 15985(2014) | TS>20 %,52±2 ℃,pH=7.5~8.5,测试材料浓度 20 g/反应器,总体积>750 mL | 在高固体厌氧消化条件下,通过测量试验结束时产生的沼气和分解程度来评估基于有机化合物的塑料的最终厌氧生物降解性 |
ASTM D5210(2007) | TS>0.1 %,35±2 ℃,碳含量充足的样品,总体积100 mL | 在实验室条件下,测定合成塑料材料暴露于来自污水处理厂厌氧消化池的市政污泥后的厌氧生物降解程度和速率 | |
填埋 | ASTM D5526(2018) | TS=35 %、45 %或60 %,35±2 ℃,pH=7.5~8.5,碳含量充足的样品,总体积>800 g | 通过测定测试材料中的碳在类似垃圾填埋条件下转化为气态碳(CH4和CO2)的百分比来评估厌氧生物降解性 |
降解环境/过程 | 标准 | 测试条件 | 说明 |
---|---|---|---|
堆肥 | ISO 14855(2018) | 58±2 ℃ | 测试周期至少90天(不超过6个月),通过分析产生的CO2确定测试材料的最终好氧生物降解性 |
ASTM D5338(2015) | 58±2 ℃ | 测试周期为45天,通过测定测试材料的碳转化为CO2的百分比评估生物可降解性 | |
EN 14045(2012) | 在嗜热阶段,温度可达65 °C | 测试持续12周,在中试规模(140 L)好氧堆肥试验中评估包装材料的分解情况,测试材料与生物垃圾混合,并在实际堆肥条件下自发堆肥 | |
土壤 | ISO 17556(2019) | 25±2 ℃,黑暗或弱光,pH=6~8 | 测试周期为6个月(不超过两年),通过测量密闭呼吸计中的需氧量或CO2的释放量评估测试材料的生物降解水平 |
ASTM D5988(2018) | 20~28(±2) ℃ | 通过测量测试材料暴露在土壤中产生的CO2随时间的变化来确定好氧生物降解的程度 | |
淡水 | ISO 14851(2019) | SS=30~1 000 mg/L,20~25(±1)℃,黑暗或弱光,pH=7,测试材料浓度100~2 000 mg/L(以有机碳的形式) | 测试周期不超过2个月,通过呼吸计测定需氧量来评估测试材料在水介质中与活性污泥接触的好氧生物降解活性 |
ISO 14852(2021) | SS=30~1 000 mg/L,20~25(±1) ℃,pH=7,测试材料浓度100~2 000 mg/L(以有机碳的形式) | 测试周期不超过2个月,通过测定析出的CO2来评估测试材料在水介质中与活性污泥接触的好氧生物降解活性 | |
海洋 | ISO 18830(2016) | 15~25(±2) ℃(不超过28 ℃),黑暗或弱光,测试材料应为薄膜或片状,浓度170 mg/L ThOD或60 mg/L TOC | 测试周期不超过24个月,通过呼吸计测定需氧量来评估测试材料在海水和海底交界面的海洋沙质沉积物上沉降时的好氧生物降解活性 |
ISO 19679(2016) | 15~25(±2) ℃(不超过28 ℃),黑暗或弱光,测试材料应为薄膜或片状,浓度170 mg/L ThOD或60 mg/L TOC | 测试周期不超过2个月,通过测定产生的CO2来评估测试材料在海水和海底交界面的海洋沙质沉积物上沉降时的好氧生物降解活性 | |
ASTM D6691(2017) | 30±2 ℃ | 测试周期为10~90天,通过呼吸计测定含碳≥20 %的测试材料与至少10种已知的好氧海洋微生物或天然海水中存在的本地微生物种群接触后产生的CO2来评估好氧生物降解程度和速率 | |
厌氧水环境 | ISO 14853(2016) | TS=0.1 %~0.3 %,35±2 ℃,pH=6.8~7.2,测试材料浓度20~200 mg/L(以有机碳的形式),总体积0.1~1 L | 通过测定沼气产量来评估厌氧生物降解程度 |
厌氧消化 | ISO 15985(2014) | TS>20 %,52±2 ℃,pH=7.5~8.5,测试材料浓度 20 g/反应器,总体积>750 mL | 在高固体厌氧消化条件下,通过测量试验结束时产生的沼气和分解程度来评估基于有机化合物的塑料的最终厌氧生物降解性 |
ASTM D5210(2007) | TS>0.1 %,35±2 ℃,碳含量充足的样品,总体积100 mL | 在实验室条件下,测定合成塑料材料暴露于来自污水处理厂厌氧消化池的市政污泥后的厌氧生物降解程度和速率 | |
填埋 | ASTM D5526(2018) | TS=35 %、45 %或60 %,35±2 ℃,pH=7.5~8.5,碳含量充足的样品,总体积>800 g | 通过测定测试材料中的碳在类似垃圾填埋条件下转化为气态碳(CH4和CO2)的百分比来评估厌氧生物降解性 |
降解环境 | 菌株 | 降解条件 | 降解PHA种类 | 参考文献 |
---|---|---|---|---|
土壤 | Actinobacteria, Firmicutes和 Proteobacteria | 27~28 ℃,pH=4.3~5.6,黏土或沙质黏土,平均光强度819~12 886 Lux | P(3HB),P(3HB⁃co⁃8 mol% 3HHx),P(3HB⁃co⁃12 mol%⁃3HHx) 和P(3HB⁃co⁃21 mol% 3HHx) | [ |
海洋土壤 | Bacillus sp. JY14 | 固体或液体,甚至高温高盐的条件 | PHB,P(3HB⁃co⁃4HB)和P(3HB⁃co⁃3HV) | [ |
海洋 | Enterobacter, Bacillus和 Gracilibacillus | 28.75±1.65 ℃,pH=7.0~7.5,平均盐度32 ‰~35 ‰,DO=5.4~8.3 mg/mL | 3⁃HB和3⁃HB/3⁃HV | [ |
好氧海水 | Sphingomonadales, Clostridiales, Rhodobacterales, Gemmatales, Bacillales和 Solirubrobacterales | 常温 | P(3HB⁃co⁃3HHx) | [ |
厌氧消化 | PeptococcaceaeBacterium Ri50, Bacteroides plebeius和 Catenibacterium mitsuokai | 55 ℃ | PHB | [ |
厌氧消化 | Enterobacter和Cupriavidus | 38 ℃或58 ℃ | PHB | [ |
降解环境 | 菌株 | 降解条件 | 降解PHA种类 | 参考文献 |
---|---|---|---|---|
土壤 | Actinobacteria, Firmicutes和 Proteobacteria | 27~28 ℃,pH=4.3~5.6,黏土或沙质黏土,平均光强度819~12 886 Lux | P(3HB),P(3HB⁃co⁃8 mol% 3HHx),P(3HB⁃co⁃12 mol%⁃3HHx) 和P(3HB⁃co⁃21 mol% 3HHx) | [ |
海洋土壤 | Bacillus sp. JY14 | 固体或液体,甚至高温高盐的条件 | PHB,P(3HB⁃co⁃4HB)和P(3HB⁃co⁃3HV) | [ |
海洋 | Enterobacter, Bacillus和 Gracilibacillus | 28.75±1.65 ℃,pH=7.0~7.5,平均盐度32 ‰~35 ‰,DO=5.4~8.3 mg/mL | 3⁃HB和3⁃HB/3⁃HV | [ |
好氧海水 | Sphingomonadales, Clostridiales, Rhodobacterales, Gemmatales, Bacillales和 Solirubrobacterales | 常温 | P(3HB⁃co⁃3HHx) | [ |
厌氧消化 | PeptococcaceaeBacterium Ri50, Bacteroides plebeius和 Catenibacterium mitsuokai | 55 ℃ | PHB | [ |
厌氧消化 | Enterobacter和Cupriavidus | 38 ℃或58 ℃ | PHB | [ |
1 | Idris S N, Amelia T S M, Bhubalan K, et al. The degradation of single⁃use plastics and commercially viable bioplastics in the environment: A review[J]. Environmental Research, 2023, 231: 115988. |
2 | Afshar S V, Boldrin A, Astrup T F, et al. Degradation of biodegradable plastics in waste management systems and the open environment: a critical review[J]. Journal of Cleaner Production, 2024, 434: 140000. |
3 | White E M, Horn J, Wang S, et al. Comparative study of the biological degradation of poly(3⁃Hydroxybutyrate⁃ co -3⁃Hydroxyhexanoate) microbeads in municipal wastewater in environmental and controlled laboratory conditions[J]. Environmental Science & Technology, 2021, 55(17): 11 646⁃11 656. |
4 | Sullivan K P, Werner A Z, Ramirez K J, et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling[J]. Science, 2022, 378(6616): 207⁃211. |
5 | Ru J, Huo Y, Yang Y. Microbial degradation and valorization of plastic wastes[J]. Frontiers in Microbiology, 2020, 11: 442. |
6 | Zhang X, Lin L, Zhou H, et al. All⁃natural chitosan⁃based polyimine vitrimer with multiple advantages: a novel strategy to solve nondegradable plastic waste pollution[J]. Journal of Hazardous Materials, 2024, 465: 133030. |
7 | Qiu X, Ma S, Zhang J, et al. Dissolved organic matter promotes the aging process of polystyrene microplastics under dark and ultraviolet light conditions: the crucial role of reactive oxygen species[J]. Environmental Science & Technology, 2022, 56(14): 10 149⁃10 160. |
8 | Calabro’ P S, Folino A, Fazzino F, et al. Preliminary evaluation of the anaerobic biodegradability of three biobased materials used for the production of disposable plastics[J]. Journal of Hazardous Materials, 2020, 390: 121653. |
9 | Polman E M N, Gruter G J M, Parsons J R, et al. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: a review[J]. Science of The Total Environment, 2021, 753: 141953. |
10 | Abed R M M, Al⁃Hinai M, Al⁃Balushi Y, et al. Degradation of starch⁃based bioplastic bags in the pelagic and benthic zones of the Gulf of Oman[J]. Marine Pollution Bulletin, 2023, 195: 115496. |
11 | Fang F, Xu R Z, Huang Y Q, et al. Exploring the feasibility of nitrous oxide reduction and polyhydroxyalkanoates production simultaneously by mixed microbial cultures[J]. Bioresource Technology, 2021, 342: 126012. |
12 | Sohn Y J, Kim H T, Baritugo K, et al. Recent advances in sustainable plastic upcycling and biopolymers[J]. Biotechnology Journal, 2020, 15(6): 1900489. |
13 | 黄 龙. 产PHA优势菌群富集机制与三段式混菌工艺优化研究[D]. 哈尔滨:哈尔滨工业大学, 2018. |
14 | Fernandes M, Salvador A, Alves M M, et al. Factors affecting polyhydroxyalkanoates biodegradation in soil[J]. Polymer Degradation and Stability, 2020, 182: 109408. |
15 | Meereboer K W, Misra M, Mohanty A K. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites[J]. Green Chemistry, 2020, 22(17): 5 519⁃5 558. |
16 | Wang J, Liu S, Huang J, et al. A review on polyhydroxyalkanoate production from agricultural waste biomass: development, advances, circular approach, and challenges[J]. Bioresource Technology, 2021, 342: 126008. |
17 | Liu C H, Chen H Y, Chen Y L L, et al. The polyhydroxyalkanoate (PHA) synthase 1 of Pseudomonas sp. H9 synthesized a 3⁃hydroxybutyrate⁃dominant hybrid of short⁃ and medium⁃chain⁃length PHA[J]. Enzyme and Microbial Technology, 2021, 143: 109719. |
18 | Anjum A, Zuber M, Zia K M, et al. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements[J]. International Journal of Biological Macromolecules, 2016, 89: 161⁃174. |
19 | Weng Y X, Wang X L, Wang Y Z. Biodegradation behavior of PHAs with different chemical structures under controlled composting conditions[J]. Polymer Testing, 2011, 30(4): 372⁃380. |
20 | Sridewi N, Bhubalan K, Sudesh K. Degradation of commercially important polyhydroxyalkanoates in tropical mangrove ecosystem[J]. Polymer Degradation and Stability, 2006, 91(12): 2 931⁃2 940. |
21 | Thellen C, Coyne M, Froio D, et al. A processing, characterization and marine biodegradation study of melt⁃extruded polyhydroxyalkanoate (PHA) films[J]. Journal of Polymers and the Environment, 2008, 16(1): 1⁃11. |
22 | Cal A J, Kibblewhite R E, Sikkema W D, et al. Production of polyhydroxyalkanoate copolymers containing 4⁃hydroxybutyrate in engineered Bacillus megaterium[J]. International Journal of Biological Macromolecules, 2021, 168: 86⁃92. |
23 | 杨 宇, 徐爱玲, 张燕飞, 等. 生物合成材料聚β⁃羟基丁酸(PHB)的研究进展[J].生命科学研究,2006(S3): 61⁃67. |
24 | Kumar V, Sehgal R, Gupta R. Blends and composites of polyhydroxyalkanoates (PHAs) and their applications[J]. European Polymer Journal, 2021, 161: 110824. |
25 | Li F, Yu H Y, Li Y, et al. “Soft⁃rigid” synergistic reinforcement of PHBV composites with functionalized cellulose nanocrystals and amorphous recycled polycarbonate[J]. Composites Part B: Engineering, 2021, 206: 108542. |
26 | Dilkes⁃Hoffman L S, Lant P A, Laycock B, et al. The rate of biodegradation of PHA bioplastics in the marine environment: A meta⁃study[J]. Marine Pollution Bulletin, 2019, 142: 15⁃24. |
27 | García⁃Depraect O, Lebrero R, Rodriguez⁃Vega S, et al. Biodegradation of bioplastics under aerobic and anaerobic aqueous conditions: Kinetics, carbon fate and particle size effect[J]. Bioresource Technology, 2022, 344: 126265. |
28 | Chamas A, Moon H, Zheng J, et al. Degradation rates of plastics in the environment[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3 494⁃3 511. |
29 | Bagheri A R, Laforsch C, Greiner A, et al. Fate of so‐called biodegradable polymers in seawater and freshwater[J]. Global Challenges, 2017, 1(4): 1700048. |
30 | Quecholac⁃Piña X, Hernández⁃Berriel M del C, Mañón⁃Salas M del C, et al. Degradation of plastics under anaerobic conditions: a short review[J]. Polymers, 2020, 12(1): 109. |
31 | Folino A, Karageorgiou A, Calabrò P S, et al. Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review[J]. Sustainability, 2020, 12(15): 6 030. |
32 | Tanadchangsaeng N, Pattanasupong A. Evaluation of biodegradabilities of biosynthetic polyhydroxyalkanoates in thailand seawater and toxicity assessment of environmental safety levels[J]. Polymers, 2022, 14(3): 428. |
33 | Hyodo N, Gan H, Ilangovan M, et al. Coastal and deep⁃sea biodegradation of polyhydroxyalkanoate microbeads[J]. Scientific Reports, 2024, 14(1): 10302. |
34 | Mohee R, Unmar G D, Mudhoo A, et al. Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions[J]. Waste Management, 2008, 28(9): 1 624⁃1 629. |
35 | Sintim H Y, Bary A I, Hayes D G, et al. Release of micro⁃ and nanoparticles from biodegradable plastic during in situ composting[J]. Science of The Total Environment, 2019, 675: 686⁃693. |
36 | Ruggero F, Gori R, Lubello C. Methodologies to assess biodegradation of bioplastics during aerobic composting and anaerobic digestion: a review[J]. Waste Management & Research, 2019, 37(10): 959⁃975. |
37 | Yagi H, Ninomiya F, Funabashi M, et al. Anaerobic biodegradation tests of poly(lactic acid) under mesophilic and thermophilic conditions using a new evaluation system for methane fermentation in anaerobic sludge[J]. International Journal of Molecular Sciences, 2009, 10(9): 3 824⁃3 835. |
38 | Cazaudehore G, Monlau F, Gassie C, et al. Active microbial communities during biodegradation of biodegradable plastics by mesophilic and thermophilic anaerobic digestion[J]. Journal of Hazardous Materials, 2023, 443: 130208. |
39 | Van Roijen E C, Miller S A. A review of bioplastics at end⁃of⁃life: Linking experimental biodegradation studies and life cycle impact assessments[J]. Resources, Conservation and Recycling, 2022, 181: 106236. |
40 | Bátori V, Åkesson D, Zamani A, et al. Anaerobic degradation of bioplastics: a review[J]. Waste Management, 2018, 80: 406⁃413. |
41 | 林 潇, 温沁雪, 刘宝震, 等. 聚羟基烷酸酯(PHA)在污泥好氧堆肥条件下降解性能研究[C]//中国环境科学学会, 同济大学, 清华大学, 湖南农业大学. 2021年全国有机固废处理与资源化利用高峰论坛论文集. 哈尔滨工业大学环境学院城市水资源与水环境国家重点实验室, 2021:9. |
42 | 林 潇. 混菌合成PHA在污泥好氧堆肥条件下降解行为研究[D]. 哈尔滨:哈尔滨工业大学, 2021. |
43 | Muthuraj R, Valerio O, Mekonnen T H. Recent developments in short⁃ and medium⁃chain⁃ length polyhydroxyalkanoates: production, properties, and applications[J]. International Journal of Biological Macromolecules, 2021, 187: 422⁃440. |
44 | Šerá J, Serbruyns L, De Wilde B, et al. Accelerated biodegradation testing of slowly degradable polyesters in soil[J]. Polymer Degradation and Stability, 2020, 171: 109031. |
45 | Pérez⁃Arauz A O, Aguilar⁃Rabiela A E, Vargas⁃Torres A, et al. Production and characterization of biodegradable films of a novel polyhydroxyalkanoate (PHA) synthesized from peanut oil[J]. Food Packaging and Shelf Life, 2019, 20: 100297. |
46 | Šašinková D, Serbruyns L, Julinová M, et al. Evaluation of the biodegradation of polymeric materials in the freshwater environment—an attempt to prolong and accelerate the biodegradation experiment[J]. Polymer Degradation and Stability, 2022, 203: 110085. |
47 | Volova T G, Gladyshev M I, M Yu Trusova, et al. Degradation of polyhydroxyalkanoates and the composition of microbial destructors under natural conditions[J]. Microbiology, 2006, 75(5): 593⁃598. |
48 | Volova T G, Boyandin A N, Vasiliev A D, et al. Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA⁃degrading bacteria[J]. Polymer Degradation and Stability, 2010, 95(12): 2 350⁃2 359. |
49 | Wang S, Lydon K A, White E M, et al. Biodegradation of poly(3⁃hydroxybutyrate⁃ co -3⁃hydroxyhexanoate) plastic under anaerobic sludge and aerobic seawater conditions: gas evolution and microbial diversity[J]. Environmental Science & Technology, 2018, 52(10): 5 700⁃5 709. |
50 | Yagi H, Ninomiya F, Funabashi M, et al. Thermophilic anaerobic biodegradation test and analysis of eubacteria involved in anaerobic biodegradation of four specified biodegradable polyesters[J]. Polymer Degradation and Stability, 2013, 98(6): 1 182⁃1 187. |
51 | Abraham A, Park H, Choi O, et al. Anaerobic co⁃digestion of bioplastics as a sustainable mode of waste management with improved energy production⁃a review[J]. Bioresource Technology, 2021, 322: 124537. |
52 | Vardar S, Demirel B, Onay T T. Degradability of bioplastics in anaerobic digestion systems and their effects on biogas production: a review[J]. Reviews in Environmental Science and Bio/Technology, 2022, 21(1): 205⁃223. |
53 | Benn N, Zitomer D. Pretreatment and anaerobic co⁃digestion of selected PHB and PLA bioplastics[J]. Frontiers in Environmental Science, 2018, 5: 93. |
54 | Yagi H, Ninomiya F, Funabashi M, et al. Mesophilic anaerobic biodegradation test and analysis of eubacteria and archaea involved in anaerobic biodegradation of four specified biodegradable polyesters[J]. Polymer Degradation and Stability, 2014, 110: 278⁃283. |
55 | García⁃Depraect O, Bordel S, Lebrero R, et al. Inspired by nature: microbial production, degradation and valorization of biodegradable bioplastics for life⁃cycle⁃engineered products[J]. Biotechnology Advances, 2021, 53: 107772. |
56 | Tosin M, Pischedda A, Degli⁃Innocenti F. Biodegradation kinetics in soil of a multi⁃constituent biodegradable plastic[J]. Polymer Degradation and Stability, 2019, 166: 213⁃218. |
57 | Awasthi S K, Kumar M, Kumar V, et al. A comprehensive review on recent advancements in biodegradation and sustainable management of biopolymers[J]. Environmental Pollution, 2022, 307: 119600. |
58 | Cho J Y, Lee Park S, Lee H J, et al. Polyhydroxyalkanoates (PHAs) degradation by the newly isolated marine Bacillus sp. JY14[J]. Chemosphere, 2021, 283: 131172. |
59 | Ong S Y, Sudesh K. Effects of polyhydroxyalkanoate degradation on soil microbial community[J]. Polymer Degradation and Stability, 2016, 131: 9⁃19. |
60 | Jendrossek D. Peculiarities of PHA granules preparation and PHA depolymerase activity determination[J]. Applied Microbiology and Biotechnology, 2007, 74(6): 1186⁃1196. |
61 | Roohi, Zaheer M R, Kuddus M. PHB (poly‐β‐hydroxybutyrate) and its enzymatic degradation[J]. Polymers for Advanced Technologies, 2018, 29(1): 30⁃40. |
62 | Amadu A A, Qiu S, Ge S, et al. A review of biopolymer (Poly⁃β⁃hydroxybutyrate) synthesis in microbes cultivated on wastewater[J]. Science of The Total Environment, 2021, 756: 143729. |
63 | Liu G, Hou J, Cai S, et al. A patatin⁃like protein associated with the polyhydroxyalkanoate (PHA) granules of haloferax mediterranei acts as an efficient depolymerase in the degradation of native PHA[J]. Applied and Environmental Microbiology, 2015, 81(9): 3 029⁃3 038. |
64 | Zhou L, Sang S, Li J, et al. From waste to resource: metagenomics uncovers the molecular ecological resources for plastic degradation in estuaries of South China[J]. Water Research, 2023, 242: 120270. |
65 | Hegde S, Diaz C A, Dell E M, et al. Investigation of process parameters on the anaerobic digestion of a poly(hydroxyalkonate) film[J]. European Polymer Journal, 2021, 148: 110349. |
66 | 吴晓岩. 聚羟基丁酸酯(PHB)生物循环降解的研究[D].长春:东北师范大学, 2011. |
[1] | 储星宇 方芳 徐润泽 王苏娜 操家顺. 聚羟基脂肪酸酯在不同条件下的生物降解研究进展[J]. , 2025, 39(5): 84-91. |
[2] | 荣鑫, 李向鹏, 吴亮, 李旭娟, 许向彬. 生物降解膜在重庆涪陵地区烟草种植中的应用研究[J]. 中国塑料, 2025, 39(4): 64-68. |
[3] | 谢世爽, 吴亮, 黄峰, 荣鑫, 湛玉舟, 李旭娟, 许向彬. 全生物降解膜在烤烟种植中的适应性及其对微生物多样性的影响[J]. 中国塑料, 2025, 39(3): 90-94. |
[4] | 高成涛, 胥秋, 张黎, 李剑, 黄维, 陈劲松, 刘楠, 何声宝, 陈思瑶, 潘首慧. 无机纳米粒子在可生物降解复合材料中的应用进展[J]. 中国塑料, 2025, 39(1): 85-91. |
[5] | 陈卓, 胡婕, 马超, 李晓慧, 班甜甜, 刘小翠. 贵州地形及气候条件下生物降解地膜对白菜产量、土壤环境和经济效益的影响[J]. 中国塑料, 2025, 39(1): 97-103. |
[6] | 崔豹, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 聚乳酸复合材料共混改性研究及应用进展[J]. 中国塑料, 2024, 38(9): 129-136. |
[7] | 殷茂峰, 王晓珂, 孙国华, 张信, 李鹏鹏, 马劲松, 肖军, 侯连龙. 红外光谱快速检测生物降解聚酯的研究[J]. 中国塑料, 2024, 38(9): 94-100. |
[8] | 骆佳伟, 周炳, 王洪学, 贾钦. 扩链条件对聚丁二酸丁二酯⁃共⁃对苯二甲酸丁二酯/滑石粉共混物性能的影响[J]. 中国塑料, 2024, 38(6): 1-11. |
[9] | 孟凡悦, 文悦, 李琛, 高珊. 生物基塑料包装需氧生物降解研究进展[J]. 中国塑料, 2024, 38(4): 109-115. |
[10] | 郭志豪, 冯涛, 李字义, 王晶, 王冰, 王艺翰, 曹博为. 塑料降解测试中塑料混合物湿度的变化规律[J]. 中国塑料, 2024, 38(3): 94-100. |
[11] | 林炳荣. 厌氧发酵液为底物合成聚羟基脂肪酸酯(PHA)的研究进展[J]. 中国塑料, 2024, 38(10): 36-42. |
[12] | 吴俊峰, 杨慎宇. 聚羟基脂肪酸酯/氧化石墨烯复合材料的制备及性能表征[J]. 中国塑料, 2024, 38(10): 43-47. |
[13] | 王梓丞, 杨彪. 生物降解阻隔材料的研究进展[J]. 中国塑料, 2023, 37(12): 124-134. |
[14] | 孙文潇, 杨帆, 侯梦宗, 贺丹丹, 吴慧, 刘强, 张宏. 环境中的微塑料污染及降解[J]. 中国塑料, 2023, 37(11): 117-126. |
[15] | 马志蕊, 尹甜, 蒋志魁, 杨璠, 祝孟珂, 杨洋, 韩宇, 翁云宣, 张彩丽. PBS及其复合膜的制备及应用研究进展[J]. 中国塑料, 2023, 37(10): 24-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||