
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (12): 135-142.DOI: 10.19491/j.issn.1001-9278.2023.12.019
• 综述 • 上一篇
收稿日期:
2023-11-16
出版日期:
2023-12-26
发布日期:
2023-12-26
通讯作者:
李莹(1982-),女,博士,研究方向为聚合物发泡材料,ying8285@126.com
GUO Wenjiao1, LI Juan2, LI Ying3()
Received:
2023-11-16
Online:
2023-12-26
Published:
2023-12-26
Contact:
LI Ying
E-mail:ying8285@126.com
摘要:
介绍了聚丙烯(PP)基纳米复合材料在高压直流(HVDC)电缆绝缘材料中的应用进展,特别关注了纳米填料的各种参数对PP基HVDC电缆绝缘材料电气性能的影响。最后,对PP基纳米复合材料在HVDC电缆绝缘材料中的应用进行了展望。
中图分类号:
郭文娇, 李娟, 李莹. 纳米复合对聚丙烯高压直流电缆电气性能影响的研究进展[J]. 中国塑料, 2023, 37(12): 135-142.
GUO Wenjiao, LI Juan, LI Ying. Research progress on electric property of polypropylene nanocomposites for HVDC cables insulation material[J]. China Plastics, 2023, 37(12): 135-142.
1 | 黄兴溢,张 军,江平开. 热塑性电力电缆绝缘材料:历史与发展[J]. 高电压技术,2018,44(5):1 377⁃1 398. |
HUANG X Y, ZHANG J, JIANG P K. Thermoplastic insulation materials for power cables: history and progress [J]. High Voltage Engineering,2018,44(5):1 377⁃1 398. | |
2 | 钟力生,任海洋,曹 亮,等. 挤包绝缘高压直流电缆的发展[J]. 高电压技术,2017,43(11):3 473⁃3 489. |
ZHONG L S, REN H Y, CAO L, et al. Development of high voltage direct current extruded cables [J]. High Voltage Engineering,2017,43(11):3 473⁃3 489. | |
3 | 赵健康,赵 鹏,陈铮铮,等. 高压直流电缆绝缘材料研究进展评述[J]. 高电压技术,2017,43(11):3 490⁃3 503. |
ZHAO J K, ZHAO P, CHEN Z Z,et al. Review on progress of HVDC cables insulation materials [J]. High Voltage Engineering,2017,43(11):3 490⁃3 503. | |
4 | Tazawa S. Recycling of insulated wire and cable and technologies for low environmental impact[J]. The Transactions of the Institute of Electrical Engineers of Japan B, 2003, 123(3): 265⁃268. |
5 | Andritsch T, Vaughan A, Stevens G C. Novel insulation materials for high voltage cable systems[J]. IEEE Electrical Insulation Magazine, 2017, 33(4): 27⁃33. |
6 | Hosier I L, Vaughan A S, Swingler S G. An investigation of the potential of polypropylene and its blends for use in recyclable high voltage cable insulation systems[J]. Journal of Materials Science, 2011, 46(11): 4 058⁃4 070. |
7 | Lu Cheng, Chi Xiaohong, Yan Chenyu, et al. Polypropylene nanocomposite for power equipment: a review[J]. IET Nanodielectrics, 2018, 1(2): 92⁃103. |
8 | Li, Z, Du B. Polymeric insulation for high⁃voltage DC extruded cables: challenges and development directions[J]. IEEE Electrical Insulation Magazine, 2018, 34(6):30⁃43. |
9 | Liu W, Cheng L, Li S. Review of electrical properties for polypropylene based nanocomposite[J]. Composites Communications, 2018, 10(12): 221⁃225. |
10 | Hanley T L. A general review of polymeric insulation for use in HVDC cables[J]. IEEE Electrical Insulation Magazine, 2003, 19(1):13⁃24. |
11 | Fu M, Chen G, Dissado L A, et al. Influence of thermal treatment and residues on space charge accumulation in XLPE for DC power cable application[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(1): 53⁃64. |
12 | Hussin N, Chen G. Analysis of space charge formation in LDPE in the presence of crosslinking byproducts[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(1): 126⁃133. |
13 | Zhang Yewen, Lewiner J, Alquie C, et al. Evidence of strong correlation between space charge buildup and breakdown in cable insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(6): 778⁃783. |
14 | Andrews T, Hampton R N, Smedberg A, et al. The role of degassing in XLPE power cable manufacture[J]. IEEE Electrical Insulation Magazine, 2006, 22(6): 5⁃16. |
15 | Kurahashi Kiyoshi, Matsuda Yoshiji, Miyashita Yoshitsugu, et al. The application of a novel polypropylene to the insulation of an electric power cable[J]. Electrical Engineering in Japan, 2004, 146(1): 18⁃26. |
16 | Huang Xingyi, Fan Yanyan, Zhang Jun, et al. Polypropylene based thermoplastic polymers for potential recyclable HVDC cable insulation applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3): 144601456. |
17 | Yao Zhou, He Jinliang, Hu Jun, et al. Evaluation of polypropylene/polyolefin elastomer blends for potential recyclable HVDC cable insulation applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2): 673⁃681. |
18 | Hosier I L. High performance polymer blend systems for HVDC applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(4): 1 197⁃1 203. |
19 | Lewis T J. Nanometric dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5): 812⁃825. |
20 | Frechette M F, Trudeau M L, Alamdar H D, et al. Introductory remarks on nanodielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 808⁃818. |
21 | Tanaka T, Montanari G C, Mulhaupt R. Polymer dielectrics and electrical insulation⁃perspectives for processing technologies, material characterization and future applications [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 763⁃784. |
22 | Madkour L H. Nanoelectronic materials: fundamentals and applications[M]. Springer, Switzerland: Advanced Structured Materials, 2019, 116. |
23 | Pleşa Ilona, Noţingher Petru V, Schlögl Sandra, et al. Properties of polymer composites used in high⁃voltage applications[J]. Polymers, 2016, 8(5):173⁃183. |
24 | Raetzke S, Kindersberger J. The effect of interphase structures in nanodielectrics[J]. IEEJ Transactions on Fundamentals and Materials, 2006, 126(11): 1 044⁃1 049. |
25 | Lau K Y, Vaughan A S, Chen G, et al. Nanodielectrics: opportunities and challenges[J]. IEEE Electrical Insulation Magazine, 2015, 31(4): 45⁃54. |
26 | Tanaka T, Kozako M, Fuse N, et al. Proposal of a multi⁃core model for polymer nano⁃composite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 669⁃681. |
27 | Li Shengtao, Yin Guilai, Chen G., et al. Short⁃term breakdown and long⁃term failure in nanodielectrics: a review[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(5): 1 523⁃1 535. |
28 | Lewis T J. Interfaces are the dominant feature of dielectrics at the nano⁃metric level[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 739⁃753. |
29 | Lewis T J. Interfaces: nanometric dielectrics [J]. Journal of Physics D: Applied Physics, 2005, 38(2): 202⁃212. |
30 | Seiler J, Kindersberger J. Insight into the interphase in polymer nano⁃composite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 537⁃547. |
31 | Tanaka T. Dielectric nanocomposites with insulating properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(5): 914⁃928. |
32 | Cao Weikang, Li Zhe, Sheng Gehao, et al. Insulating property of polypropylene nanocomposites filled with nano⁃Mgo of different concentration[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3): 1 430⁃1 437. |
33 | Yao Zhou, Chao Yuan, Qi Li, et al. Recyclable insulation material for HVDC cables in global energy interconnection[J]. Global Energy Interconnection, 2018, 1(4): 520⁃526. |
34 | Zha J, Ying Wang, Li Weikang, et al. Electrical properties of polypropylene/styrene⁃ethylene⁃butylene⁃styrene block copolymer/MgO nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3):1 457⁃1 464. |
35 | Xie Dongri, Min Daomin, Yin Huang, et al. Classified effects of nanofillers on DC breakdown and partial discharge resistance of polypropylene/alumina nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3): 698⁃705. |
36 | Zha Jun⁃Wei, Wang Jun⁃Fu, Wang Si⁃Jiao, et al. Effect of modified ZnO on electrical properties of PP/SEBS nanocomposites for HVDC cables[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(6):2 358⁃2 365. |
37 | Yao Zhou, Hu Jun, Dang Bin, et al. Effect of different nanoparticles on tuning electrical properties of polypropylene nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3):1 380⁃1 389. |
38 | Muhammad S H, Mariatti J, Mohamad K M. Electrical insulation characteristics of alumina, titania, and organoclay nanoparticles filled PP/EPDM nanocomposites[J]. Journal of Applied Polymer Science, 2014, 131(23): 41 184⁃41 192. |
39 | Du B X, Kong X X, Cui B, et al. Improved ampacity of buried HVDC cable with high thermal conductivity LDPE/BN insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(5): 2 667–2 676. |
40 | Du B, Cui B. Effects of Thermal Conductivity on Dielectric Breakdown of Micro, Nano Sized BN filled Polypropylene Composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4), 2 116–2 125. |
41 | Yao Zhou, Hu Jun, Xin Chen, et al. Thermoplastic Polypropylene/Aluminum Nitride Nano⁃Composites with Enhanced Thermal Conductivity and Low Dielectric Loss[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5):2 768–2 776. |
42 | Virtanen Suvi, Ranta Hannes, Ahonen Susanna, et al. Structure and Dielectric Breakdown Strength of Nano Calcium Carbonate/Polypropylene Composites[J]. Journal of Applied Polymer, 2014, 131(1): 1⁃8. |
43 | Min Daomin, Yan Chenyu, Rui Mi, et al. Carrier Transport and Molecular Displacement Modulated DC Electrical Breakdown of Polypropylene Nanocomposites[J]. Polymers, 2017, 10(11): 1207⁃1226. |
44 | Wang X, Andritsch T, Chen G. Effect of Surface Functionalization on the Dielectric Properties of Polypropylene Aluminium Nitride Nano⁃Composites[R]. 2018 IEEE 2nd international conference on dielectrics (ICD), Budapest, IEEE, 2018:1⁃4. |
45 | Chi X, Wang W, Li S, et al. Polymer Nanocomposites in High⁃Voltage Insulation: The Dielectric Characteristics of Doped Polypropylene[J]. IEEE Nanotechnology Magazine, 2018, 12(2): 33⁃40. |
46 | Diao J, Huang X, Jia Q, et al. Thermoplastic Isotactic Polypropylene/Ethylene⁃Octene Polyolefin Copolymer Nanocomposite for Recyclable HVDC Cable Insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3):1 416⁃1 429. |
47 | Lau K Y, Vaughan A S, Chen G, et al. On Nanosilica Surface Functionalization Using Different Aliphatic Chain Length Silane Coupling Agents[R]. 2013 IEEE International Conference on Solid Dielectrics (ICSD), Bologna, Italy, IEEE: 2013:896⁃899. |
48 | Hosier I, Praeger M, Swingler S. On the Effect of Functionalizer Chain Length and Water Content in Polyethylene/Silica Nanocomposites: Part I‐Dielectric Properties and Breakdown Strength[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3):1 698–1 707. |
49 | Hu Shixun, Yao Zhou, Chao Yuan, et al. Surface‐modification Effect of MgO Nanoparticles on the Electrical Properties of Polypropylene Nanocomposite[J]. High Voltage, 2020,5(3): 249⁃255. |
50 | Yeung Celia, Vaughan Alun S. On the Effect of Nanoparticle Surface Chemistry on the Electrical Characteristics of Epoxy⁃Based Nanocomposites[J]. Polymers,2016, 8(4): 126⁃141. |
51 | Wang Xinyu, Andritsch Thomas, Chen George. Influence of the Amount of Silane Coupling Agent on the Dielectric Properties of AlN/Polypropylene Nanocomposites[R]. 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Richland: IEEE, 2019: 356⁃359. |
52 | Du B X, Hou Z H, Li J, et al. Effect of Graphene Nanoplatelets on Space Charge and Breakdown Strength of PP/ULDPE Blends for HVDC Cable Insulation [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(6): 2 405⁃2 412. |
53 | Zhang Dong⁃Li, Zha Jun⁃Wei, Li Chao⁃Qun, et al. High Thermal Conductivity and Excellent Electrical Insulation Performance in Double‐percolated Three‐phase Polymer Nanocomposites [J]. Composites Science and Technology, 2017, 144(5): 36–42. |
54 | Bo Li, Xidas Panagiotis I, Manias Evangelos. High Breakdown Strength Polymer Nano⁃Composites Based on the Synergy of Nanofiller Orientation and Crystal Orientation for Insulation and Dielectric Applications[J]. ACS Applied Nano Materials, 2018,1(7): 3 520–3 530. |
[1] | 赵儒硕, 谭晶, 杨卫民, 缪顺福, 闵云杰, 程礼盛, 何雪涛. 水对聚丙烯腈溶液热致变凝胶化的微观促进机理研究[J]. 中国塑料, 2023, 37(9): 1-7. |
[2] | 李丹, 赵彪, 陈轲, 王帆, 张靖宇, 张凤波, 潘凯. 中空聚丙烯纤维制备及应用研究进展[J]. 中国塑料, 2023, 37(9): 109-114. |
[3] | 董党锋. 废旧聚乙烯/废旧聚丙烯/废硫渣复合改性剂含量对改性沥青性能的影响[J]. 中国塑料, 2023, 37(8): 101-106. |
[4] | 王文惠, 朱惠豪, 李果, 王玉, 武凡, 林镇斌, 马玉录, 谢林生. PP/PC光扩散材料的制备及其抗紫外性能优化[J]. 中国塑料, 2023, 37(8): 8-12. |
[5] | 张攀攀, 刘静, 姜健准, 曹雪君. 超高效液相色谱法测定聚丙烯中成核剂[J]. 中国塑料, 2023, 37(8): 93-100. |
[6] | 戴熙瀛, 张翀, 万彩霞, 杨威, 邢照亮. 影响BOPP电容膜击穿场强的微观结构及与制备工艺的关系探究[J]. 中国塑料, 2023, 37(12): 29-34. |
[7] | 张策, 杨卫民, 谭晶, 丁玉梅, 程礼盛. 微波强化脱除聚丙烯腈薄膜中残留二甲基亚砜的实验研究[J]. 中国塑料, 2023, 37(10): 1-7. |
[8] | 李贞印, 张效琳, 魏聪, 施智勇, 邵春光. 增压对聚丙烯/多壁碳纳米管复合材料结晶行为的影响[J]. 中国塑料, 2023, 37(10): 117-124. |
[9] | 张恒源, 刘涛, 张师军, 刘建叶. 选择性激光烧结聚丙烯工艺⁃结构⁃性能的研究[J]. 中国塑料, 2023, 37(10): 50-55. |
[10] | 李朝, 贾元山. 增容剂马来酸酐接枝聚丙烯接枝率的酸碱反滴定法测定误差分析[J]. 中国塑料, 2023, 37(10): 77-84. |
[11] | 张恒源, 刘建叶, 王绍杰, 徐耀辉, 张师军. 聚丙烯在溶液中的等温结晶行为[J]. 中国塑料, 2023, 37(1): 13-17. |
[12] | 赵一权, 董婧晗, 张铜柱, 王焰孟, 刁帅, 李明贺, 徐昌竹. 汽车外饰用再生聚丙烯材料性能研究[J]. 中国塑料, 2023, 37(1): 112-118. |
[13] | 张林, 夏章川, 何亚东, 信春玲, 王瑞雪, 任峰. 等离子体射流载气流量大小对玻璃纤维改性效果影响的研究[J]. 中国塑料, 2022, 36(9): 7-15. |
[14] | 张兵. 无规共聚聚丙烯管材氧化诱导时间测试探究[J]. 中国塑料, 2022, 36(8): 107-109. |
[15] | 赵鸿敬, 朱江. 微纳层叠天然橡胶/聚丙烯两相挤出的数值模拟研究[J]. 中国塑料, 2022, 36(8): 110-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||