1 |
Mengwei T, Lijun Q, Jingyu W,et al.From physical mixtures to block copolyme:Impose outstandingly toughening and flame retardant effect to polypropylene[J].Composites Part B,2023,253:110538.
|
2 |
Wu H Y, Li Y T, Zeng B R,et al.A high synergistic P/N/Si⁃containing additive with dandelion⁃shaped structure deriving from selfassembly for enhancing thermal and flame retardant property of epoxy resins[J].React Funct Polym,2018,131:89⁃99.
|
3 |
Liang W H, Yu B, Wang W,et al.A triazine⁃based hyperbranched charforming agent for efficient intumescent flame retardant poly (lactic acid) composites[J].Compos Commun,2022,33:101225.
|
4 |
Zhang W C, Camino G, Yang R J.Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance[J].Prog Polym Sci,2017,67:77⁃125.
|
5 |
Song P A, Shen Y, Du B X,et al.Effects of reactive compatibilization on the morphological, thermal, mechanical,and rheological properties of intumescent flame⁃retardant polypropylene[J].ACS Appl Mater Interfaces,2009,1:452⁃459.
|
6 |
万永清.基于ReaxFF力场阻燃聚碳酸酯热解及阻燃机理研究[D].太原:中北大学,2022.
|
7 |
孙浩,姚贵策,高慧,等.基于ReaxFF反应分子动力学模拟的正十二烷醇的热裂解特性研究[J].工程热物理学报,2023,44(02):444⁃450.
|
|
SUN H, YAO G C, GAO H,et al. ReaxFF molecular dynamics study on the pyrolysis process of N⁃dodecanol[J]. Journal of Engineering Thermophysics,2023,44(02):444⁃450.
|
8 |
霍二光,刘朝,李期斌,等.基于ReaxFF模拟的正戊烷热分解机理研究[J].工程热物理报,2020,41(01):61⁃67.
|
|
HUO E G, LIU C, LI Q B,et al. Thermal decomposition mechanism of n⁃pentane by ReaxFF simulations[J]. Journal of Engineering Thermophysics,2020,41(01):61⁃67.
|
9 |
Xin Z Z, Na D, Liu Y X,et al.Study on the formation process of soot from 2,5⁃dimethylfuran pyrolysis by ReaxFF molecular dynamics[J].Journal of Thermal Analysis and Calorimetry,2023,148(17):9 145⁃3 166.
|
10 |
Min H Z, Bao F Z, Yi F C,et al.Kinetic mechanism for simulating the temperature and pressure effect on the explosive decomposition of acetylene by ReaxFF molecular dynamics[J].Chemistry Select,2023,8(10):202204563.
|
11 |
刘连池. ReaxFF反应力场的开发及其在材料科学中的若干应用[D].上海交通大学,2012.
|
12 |
Brenner D W.Empirical potential for hydrocarbons for use in simulating the chemical vapor⁃deposition of diamond films[J].Physical Review B,1990,42(15):9 458⁃9 471.
|
13 |
Brenner D W, Shenderova O A, Harrison J A,et al.A second⁃generation reactive empirical bond order(REBO) potential energy expression for hydrocarbons[J].Journal of Physics_Condensed Matter,2002,14(4):783⁃802.
|
14 |
Root D M, Landis C R, Cleveland T.Valence bond concepts applied to the molecular mechanics description of molecular shapes.Application to nonhypervalent molecular of the P⁃block[J].Journal of the American Chemical Society,1993,115(10):4 201⁃4 209.
|
15 |
Dasgupta Siddharth, Lorant Francois, C T van Duin Adri.ReaxFF:a reactive force field for hydrocarbons[J].J Phys Chem A,2001,105(41):9 396⁃9 409.
|
16 |
Russo M F, van Duin A C T.Atomistic⁃scale simulations of chemical reactions:Bridging from quantum chemistry to engineering[J].Nuclear Instruments & Methods in Physics Research Section B⁃Beam Interactions with Materials and Atoms,2011,269(14):1 549⁃1 554.
|
17 |
Wu H Y, Li Y T, Zeng B R,et al.A high synergistic P/N/Si⁃containing additive with dandelion⁃shaped structure deriving from selfassembly for enhancing thermal and flame retardant property of epoxy resins[J].React Funct Polym, 2018,131:89⁃99.
|
18 |
Huo E, Liu C, Xu X,et al.A ReaxFF⁃based molecular dynamics study of the oxidation decomposition mechanism of HFO-1336mzz(Z)[J].International Journal of Refrigeration,2018,93(9):249⁃258.
|
19 |
Cao Y, Liu C, Xu X,et al.Infuence of water on HFO-1234yf oxidation pyrolysis via ReaxFF molecular dynamics simulation[J].Molecular Physics,2019,117(13):1 768⁃1 780.
|
20 |
Hong D, Guo X.A reactive molecular dynamics study of CH4 combustion in O2/CO2/H20 environments[J].Fuel Processing Technology,2017,167(13):416⁃424.
|
21 |
Hong D, Liu L, Huang Y,et al.Chemical effect of H2O on CH4 oxidation during combustion in O2/H2O environments[J].Energy & Fuels,2016,30(10):8 491⁃8 498.
|
22 |
Zheng M, Wang Z, Li X,et al.Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics[J].Fuel,2016,177(15):130⁃141.
|
23 |
Zhan J, Wu R, Liu X,et al.Preliminary understanding of initial reaction process for subbituminous coal pyrolysis with molecular dynamics simulation[J].Fuel,2014,134(16):283⁃292.
|
24 |
Foster D P, Pinettes C.Surface critical behaviour of the vertex⁃interacting self⁃avoiding walk on the square lattice[J].Journal of Physics A Mathematical and Theoretical,2012,45(50):505003.
|
25 |
Chenoweth K, Cheung S, Van D A,et al.Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field[J].Journal of the American Chemical Society,2005,127(19):7 192⁃7 202.
|
26 |
Hao H, Chow C L, Lau D.Carbon monoxide release mechanism in cellulose combustion using reactive forcefield[J].Fuel,2020,269:117422.
|
27 |
Zhao T, Li T, Xin Z,et al.A ReaxFF⁃based molecular dynamics simulation of the pyrolysis mechanism for polycarbonate[J].Energy & Fuels,2018,32(2):2 156⁃2 162.
|
28 |
Bo Zhang, van Duin A C T, Johnson J K.Development of a ReaxFF reactive force field for tetrabutylphosphonium glycinate/CO2 mixtures[J].J Phys Chem B,2014,118(41):12 008⁃12 016.
|