
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2020, Vol. 34 ›› Issue (8): 101-112.DOI: 10.19491/j.issn.1001-9278.2020.08.016
宗琳1, 陈晨伟1,2,3,4, 陈智杰1, 谢晶1,2,3,4()
收稿日期:
2020-02-10
出版日期:
2020-08-26
发布日期:
2020-08-26
基金资助:
Lin ZONG1, Chenwei CHEN1,2,3,4, Zhijie CHEN1, Jing XIE1,2,3,4()
Received:
2020-02-10
Online:
2020-08-26
Published:
2020-08-26
Contact:
Jing XIE
E-mail:jxie@shou.edu.cn
摘要:
综述了淀粉/聚乙烯醇(PVA)活性包装薄膜及其在食品包装中的研究进展,主要对从不同比例共混、疏水改性、增强改性等方面对淀粉/PVA薄膜的改性研究,从功能特性和活性物质对薄膜性能的影响2个方面对淀粉/PVA活性薄膜研究和薄膜在食品包装中的应用3个方面进行了归纳总结,旨在为以淀粉/PVA为基材的活性包装薄膜研究提供参考。
中图分类号:
宗琳, 陈晨伟, 陈智杰, 谢晶. 淀粉/聚乙烯醇活性包装薄膜及其在食品包装应用中的研究进展[J]. 中国塑料, 2020, 34(8): 101-112.
Lin ZONG, Chenwei CHEN, Zhijie CHEN, Jing XIE. Research Progress in Starch/Poly(vinyl alcohol) Active Packaging Film and Its Application in Food Packaging[J]. China Plastics, 2020, 34(8): 101-112.
薄膜基材 | 活性物质 | 测试菌种(抑菌效果) | 参考文献 |
---|---|---|---|
马铃薯淀粉/PVA | 纳米氧化锌 | 大肠杆菌(氧化锌为0.5 %,抑菌率为92.5 %) | [ |
小麦淀粉/PVA | 纳米二氧化钛 | 大肠杆菌(0~4.5 cm)、单核细胞增生李斯特菌(0~3.5 cm) | [ |
玉米淀粉/PVA | 氧化石墨烯、纳米银 | 大肠杆菌(0~6 mm、0~14.5 mm)、金黄色葡萄球菌(0~7 mm、0~10.5 mm) | [ |
淀粉/PVA | 纳米银 | 大肠杆菌(0~14 mm)、金黄色葡萄球菌(0~13.6 mm) | [ |
木薯淀粉/PVA | 丁香精油/牛至精油 | 大肠杆菌(0~16 mm/0~14 mm)、金黄色葡萄球菌(3~26 mm/0~43 mm) | [ |
可溶性淀粉/PVA | 柠檬酸 | 大肠杆菌(0~0.45 cm)、单核细胞增生李斯特菌(0~0.43 cm) | [ |
可溶性淀粉/PVA | 纳米银 | 大肠杆菌(0~17.1 mm)、金黄色葡萄球菌(0~21 mm) | [ |
菠萝蜜淀粉/PVA | 肉豆蔻油、纳米氧化锌 | 鼠伤寒沙门氏菌(0~27 mm、0~28 mm) | [ |
淀粉/PVA | 蜂胶提取物、红甘蓝花青素 | 大肠杆菌(0~21 mm)、金黄色葡萄球菌(0~15 mm) | [ |
薄膜基材 | 活性物质 | 测试菌种(抑菌效果) | 参考文献 |
---|---|---|---|
马铃薯淀粉/PVA | 纳米氧化锌 | 大肠杆菌(氧化锌为0.5 %,抑菌率为92.5 %) | [ |
小麦淀粉/PVA | 纳米二氧化钛 | 大肠杆菌(0~4.5 cm)、单核细胞增生李斯特菌(0~3.5 cm) | [ |
玉米淀粉/PVA | 氧化石墨烯、纳米银 | 大肠杆菌(0~6 mm、0~14.5 mm)、金黄色葡萄球菌(0~7 mm、0~10.5 mm) | [ |
淀粉/PVA | 纳米银 | 大肠杆菌(0~14 mm)、金黄色葡萄球菌(0~13.6 mm) | [ |
木薯淀粉/PVA | 丁香精油/牛至精油 | 大肠杆菌(0~16 mm/0~14 mm)、金黄色葡萄球菌(3~26 mm/0~43 mm) | [ |
可溶性淀粉/PVA | 柠檬酸 | 大肠杆菌(0~0.45 cm)、单核细胞增生李斯特菌(0~0.43 cm) | [ |
可溶性淀粉/PVA | 纳米银 | 大肠杆菌(0~17.1 mm)、金黄色葡萄球菌(0~21 mm) | [ |
菠萝蜜淀粉/PVA | 肉豆蔻油、纳米氧化锌 | 鼠伤寒沙门氏菌(0~27 mm、0~28 mm) | [ |
淀粉/PVA | 蜂胶提取物、红甘蓝花青素 | 大肠杆菌(0~21 mm)、金黄色葡萄球菌(0~15 mm) | [ |
时间/h | TVB?N水平/mg·(100 g)-1 | a值 | b值 | 薄膜颜色 |
---|---|---|---|---|
0 | 7.07±0.35e | 7.67±0.01a | 15.25±0.01e | ![]() |
12 | 10.82±0.32d | 5.93±0.02b | 15.63±0.17d | ![]() |
24 | 19.38±0.08c | 3.66±0.35c | 17.44±0.30c | ![]() |
36 | 24.56±0.25b | 1.91±0.08d | 20.25±0.01b | ![]() |
48 | 35.18±0.22a | 1.17±0.07e | 21.79±0.35a | ![]() |
时间/h | TVB?N水平/mg·(100 g)-1 | a值 | b值 | 薄膜颜色 |
---|---|---|---|---|
0 | 7.07±0.35e | 7.67±0.01a | 15.25±0.01e | ![]() |
12 | 10.82±0.32d | 5.93±0.02b | 15.63±0.17d | ![]() |
24 | 19.38±0.08c | 3.66±0.35c | 17.44±0.30c | ![]() |
36 | 24.56±0.25b | 1.91±0.08d | 20.25±0.01b | ![]() |
48 | 35.18±0.22a | 1.17±0.07e | 21.79±0.35a | ![]() |
1 | 陈晨伟, 王佳熙, 杨福馨, 等. 活性包装薄膜中活性物质缓释技术研究进展[J]. 食品与机械, 2019,35(1):6⁃11. |
CHEN C W, WANG J X, YANG F X, et al. Research Progress on the Controlled Release Technology of Active Compounds from Active Packaging Film[J].Food and Machinery, 2019,35(1):6⁃11. | |
2 | 曾少甫, 胡长鹰, 匡衡峰, 等. 肉桂醛在壳聚糖复合活性包装膜中的释放及在鲜猪肉冷藏中的应用[J]. 食品科学, 2018,39(9):182⁃189. |
ZENG S P, HU C Y, KUANG H F, et al. Release of Cinnamaldehyde from Active Chitosan Composite Packaging Films and Its Application in Quality Preservation of Fresh Pork[J]. Food Science, 2018,39(9):182⁃189. | |
3 | 李墨琳, 罗 欣, 刘国星, 等. 活性包装对肉制品品质及货架期影响的研究进展[J]. 食品科学, 2019,40(11):313⁃320. |
LI M L, LUO X, LIU G X, et al. A Review of Current Research on the Effect of Active Packaging on the Quality and Shelf⁃Life of Meat Products[J]. Food Science, 2019,40(11):313⁃320. | |
4 | FORTUNATI E, LUZI F, DUGO L, et al. Effect of Hydroxytyrosol Methyl Carbonate on the Thermal, Migration and Antioxidant Properties of PVA⁃based Films for Active Food Packaging[J]. Polymer International, 2016,65(8):872⁃882. |
5 | MANIGLIA B C, LAROQUE D A, DE ANDRADE L M, et al. Production of Active Cassava Starch Films; Effect of Adding a Biosurfactant or Synthetic Surfactant[J]. Reactive and Functional Polymers, 2019,144:104 368. |
6 | OLIVEIRA FILHO J G D, RODRIGUES J M, VALADARES A C F, et al. Active Food Packaging: Alginate Films With Cottonseed Protein Hydrolysates[J]. Food Hydrocolloids, 2019,92:267⁃275. |
7 | LI H, YU W, DHITAL S, et al. Starch Branching Enzymes Contributing to Amylose and Amylopectin Fine Structure in Wheat[J]. Carbohydrate Polymers, 2019,224:115 185. |
8 | THAKUR R, PRISTIJONO P, SCARLETT C J, et al. Starch⁃based Films: Major Factors Affecting Their Properties[J]. International Journal of Biological Macromolecules, 2019,132:1 079⁃1 089. |
9 | 李 帅, 钟耕辉, 刘玉梅. 多糖类可食性膜的研究进展[J]. 食品科学, 2018,39(3):309⁃316. |
LI S, ZHONG G H, LIU Y M. Progress in Edible Films Prepared with Polysaccharides[J]. Food Science, 2018,39(3):309⁃316. | |
10 | ABDULLAH Z W, DONG Y, DAVIES I J, et al. PVA, PVA Blends, and Their Nanocomposites for Biodegradable Packaging Application[J]. Polymer⁃plastics Technology and Engineering, 2017,56(12):1 307⁃1 344. |
11 | MOULAY S. Review: Poly(vinyl alcohol) Functionalizations and Applications[J]. Polymer⁃plastics Technology and Egineering, 2015,54(12):1 289⁃1 319. |
12 | TEODORESCU M, BERCEA M, MORARIU S. Biomaterials of Poly(vinyl alcohol) and Natural Polymers[J]. Polymer Reviews, 2018,58(2):247⁃287. |
13 | ELENA T E, ELENA P M, MARIA R, et al. Biological Evaluation of Some PVA/Starch Composites as Sustainable Food Packaging Candidates[J]. Journal of Biotechnology, 2015,208:58⁃59. |
14 | ABDULLAH Z W, DONG Y, HAN N, et al. Water and Gas Barrier Properties of Polyvinyl Alcohol (PVA)/Starch (ST)/ Glycerol (GL)/Halloysite Nanotube (HNT) Bionanocomposite Films: Experimental Characterisation and Modelling Approach[J]. Composites Part B: Engineering, 2019,174:107033. |
15 | YAO K, CAI J, LIU M, et al. Structure and Properties of Starch/PVA/Nano⁃SiO2 Hybrid Films[J]. Carbohydrate Polymers, 2011,86(4):1 784⁃1 789. |
16 | LUO X, LI J, LIN X. Effect of Gelatinization and Additives on Morphology and Thermal Behavior of Corn Starch/PVA Blend Films[J]. Carbohydrate Polymers, 2012,90(4):1 595⁃1 600. |
17 | CANO A, FORTUNATI E, CHÁFER M, et al. Properties and Ageing Behaviour of Pea Starch Films as Affected by Blend with Poly(vinyl alcohol)[J]. Food Hydrocolloids, 2015,48:84⁃93. |
18 | TIAN H, YAN J, RAJULU A V, et al. Fabrication and Properties of Polyvinyl Alcohol/Starch Blend Films: Effect of Composition and Humidity[J]. International Journal of Biological Macromolecules, 2017,96:518⁃523. |
19 | GUOHUA Z, YA L, CUILAN F, et al. Water Resistance, Mechanical Properties and Biodegradability of Methylated⁃cornstarch/Poly(vinyl alcohol) Blend Film[J]. Polymer Degradation and Stability, 2006,91(4):703⁃711. |
20 | JUNLAPONG K, BOONSUK P, CHAIBUNDIT C, et al. Highly Water Resistant Cassava Starch/Poly(vinyl alcohol) Films[J]. International Journal of Biological Macromolecules, 2019,137:521⁃527. |
21 | TIAN H, WANG K, LIU D, et al. Enhanced Mechanical and Thermal Properties of Poly (vinyl alcohol)/Corn Starch Blends by Nanoclay Intercalation[J]. International Journal of Biological Macromolecules, 2017,101:314⁃320. |
22 | MATHEW S, SNIGDHA S, MATHEW J, et al. Poly(vinyl alcohol): Montmorillonite: Boiled Rice Water (starch) Blend Film Reinforced with Silver Nanoparticles; Characterization and Antibacterial Properties[J]. Applied Clay Science, 2018,161:464⁃473. |
23 | AYDIN A A, ILBERG V. Effect of Different Polyol⁃based Plasticizers on Thermal Properties of Polyvinyl Alcohol:Starch Blends[J]. Carbohydrate Polymers, 2016,136:441⁃448. |
24 | JIANG X, LI H, LUO Y, et al. Studies of the Plasticizing Effect of Different Hydrophilic Inorganic Salts on Starch/Poly (vinyl alcohol) Films[J]. International Journal of Biological Macromolecules, 2016,82:223⁃230. |
25 | MUSTAFA P, NIAZI M B K, JAHAN Z, et al. PVA/Starch/Propolis/Anthocyanins Rosemary Extract Composite Films as Active and Intelligent Food Packaging Materials[J]. Journal of Food Safety, 2019,40(1):1⁃11. |
26 | WU J G, WANG P J, CHEN S C. Antioxidant and Antimicrobial Effectiveness of Catechin⁃impregnated PVA⁃starch Film on Red Meat[J]. Journal of Food Quality, 2010,33(6):780⁃801. |
27 | KALPANA S, PRIYADARSHINI S R, MARIA LEENA M, et al. Intelligent Packaging: Trends and Applications in Food Systems[J]. Trends in Food Science & Technology, 2019,93:145⁃157. |
28 | CANO A, CHÁFER M, CHIRALT A, et al. Development and Characterization of Active Films Based on Starch⁃PVA, Containing Silver Nanoparticles[J]. Food Packaging and Shelf Life, 2016,10:16⁃24. |
29 | TABASUM S, YOUNAS M, ZAEEM M A, et al. A Review on Blending of Corn Starch with Natural and Synthetic Polymers, and Inorganic Nanoparticles with Mathematical Modeling[J]. International Journal of Biological Macromolecules, 2019,122:969⁃996. |
30 | POPESCU M, DOGARU B, GOANTA M, et al. Structural and Morphological Evaluation of CNC Reinforced PVA/Starch Biodegradable Films[J]. International Journal of Biological Macromolecules, 2018,116:385⁃393. |
31 | CANO A, JIMÉNEZ A, CHÁFER M, et al. Effect of Amylose: Amylopectin Ratio and Rice Bran Addition on Starch Films Properties[J]. Carbohydrate Polymers, 2014,111:543⁃555. |
32 | SILVA FERNANDES RDA, TANAKA F N, DE MOURA M R, et al. Development of Alginate/Starch⁃based Bydrogels Crosslinked with Differentions: Hydrophilic, Kinetic and Spectroscopic Properties[J]. Materials Today Communications, 2019,21. |
33 | ALIPOORI S, MAZINANI S, ABOUTALEBI S H, et al. Review of PVA⁃based Gel Polymer Electrolytes in Flexible Solid⁃state Supercapacitors: Opportunities and challenges[J]. Journal of Energy Storage, 2020,27:1⁃23. |
34 | CHEN Q, SHI Y, CHEN G, et al. Enhanced Mechanical and Hydrophobic Properties of Composite Cassava Starch Films with Stearic Acid Modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as Strength Agent[J]. International Journal of Biological Macromolecules, 2020,142:846⁃854. |
35 | AKHAVAN A, KHOYLOU F, ATAEIVARJOVI E. Preparation and Characterization of Gamma Irradiated Starch/PVA/ZnO Nanocomposite Films[J]. Radiation Physics and Chemistry, 2017,138:49⁃53. |
36 | QIAO D, LI S, YU L, et al. Effect of Alkanol Surface Grafting on the Hydrophobicity of Starch⁃based Films[J]. International Journal of Biological Macromolecules, 2018,112:761⁃766. |
37 | ABRAMOWSKA A, CIESLA K A, BUCZKOWSKI M J, et al. The Influence of Ionizing Radiation on the Properties of Starch⁃PVA Films[J]. Nukleonika, 2015,60(3):669⁃677. |
38 | 吕玉彬,刘全校,许文才,等.国内PVA薄膜材料改性研究进展[J]. 北京印刷学院学报, 2011,19(4):1⁃4+12. |
LU Y B, LIU Q X, XU W C, et al. Domestic Research Development of Modified PVA in Thin Film Materials[J]. Journal of Beijing Institute of Graphic Communication, 2011,19(4):1⁃4+12. | |
39 | 张美洁,李树材.提高淀粉基生物降解塑料耐水性研究进展[J]. 塑料科技, 2004(1):44⁃48. |
ZHANG M J, LI S C. Research Progress in Improving Water Resistance of Starch Based Biodegradable Plastics[J]. Plastics Science and Technology, 2004(1):44⁃48. | |
40 | FRONE A N, NICOLAE C A, GABOR R A, et al. Thermal Properties of Water⁃resistant Starch–polyvinyl Alcohol Films Modified with Cellulose Nanofibers[J]. Polymer Degradation and Stability, 2015,121:385⁃397. |
41 | 于浩强. 淀粉的复合法疏水改性及其在生物降解塑料中的应用研究[D]. 济南:济南大学, 2013. |
42 | LIU Z, DONG Y, MEN H, et al. Post⁃crosslinking Modification of Thermoplastic Starch/PVA Blend Films by Using Sodium Hexametaphosphate[J]. Carbohydrate Polymers, 2012,89(2):473⁃477. |
43 | WANG S, REN J, LI W, et al. Properties of Polyvinyl Alcohol/Xylan Composite Films with Citric Acid[J]. Carbohydrate Polymers, 2014,103:94⁃99. |
44 | 王 松. 聚乙烯醇—淀粉/纳米粘土复合薄膜的制备及其用于除草剂缓释的研究[D]. 广州:华南理工大学, 2017. |
45 | MITTAL A, GARG S, KOHLI D, et al. Effect of Cross Linking of PVA/Starch and Reinforcement of Modified Barley Husk on the Properties of Composite Films[J]. Carbohydrate Polymers, 2016,151:926⁃938. |
46 | PRIYA B, GUPTA V K, PATHANIA D, et al. Synthesis, Characterization and Antibacterial Activity of Biodegradable Starch/PVA Composite Films Reinforced with Cellulosic Fibre[J]. Carbohydrate Polymers, 2014,109:171⁃179. |
47 | GUIMARÃES M, BOTARO V R, NOVACK K M, et al. Starch/PVA⁃based Nanocomposites Reinforced with Bamboo Nanofibrils[J]. Industrial Crops and Products, 2015,70:72⁃83. |
48 | JIANG X, JIANG T, GAN L, et al. The Plasticizing Mechanism and Effect of Calcium Chloride on Starch/Poly(vinyl alcohol) Films[J]. Carbohydrate Polymers, 2012,90(4):1 677⁃1 684. |
49 | 祝志峰. 几种极性增塑剂对淀粉/ PVA混合浆相分离速度的影响[J]. 武汉大学学报(理学版), 2001,47(2):161⁃164. |
ZHU Z F. Effect of Several Polar Plasticizers on the Phase Separation Rate of Starch / PVA Mixed Pulp[J]. Wuhan University Journal(Natural Science Edition), 2001,47(2):161⁃164. | |
50 | 李 伟, 祝志峰, 徐珍珍, 等. 淀粉浆料用极性增塑剂及其增塑作用的研究进展[J]. 纺织学报, 2017,38(4):171⁃176. |
LI W, ZHU Z F, XU Z Z, et al. Rerearch Progress and Plasticization Effect of Polar Plasticizers for Starch Sizing Agents[J]. Journal of Textile Research, 2017,38(4):171⁃176. | |
51 | KAHVAND F, FASIHI M. Plasticizing and Anti⁃plasticizing Effects of Polyvinyl Alcohol in Blend with Thermoplastic Starch[J]. International Journal of Biological Macromolecules, 2019,140:775⁃781. |
52 | YAN J, TIAN H, ZHANG Y, et al. Effect of Urea and Formamide Plasticizers on Starch/PVA Bioblend Sheets[J]. Journal of Applied Polymer Science, 2015,132(33):1⁃8. |
53 | HU X, JIA X, ZHI C, et al. Improving Properties of Normal Maize Starch Films Using Dual⁃modification: Combination Treatment of Debranching and Hydroxypropylation[J]. International Journal of Biological Macromolecules, 2019,130:197⁃202. |
54 | SEKHAVAT POUR Z, MAKVANDI P, GHAEMY M. Performance Properties and Antibacterial Activity of Crosslinked Films of Quaternary Ammonium Modified Starch and Poly(vinyl alcohol)[J]. International Journal of Biological Macromolecules, 2015,80:596⁃604. |
55 | LIU Y, WANG S, LAN W. Fabrication of Antibacterial Chitosan⁃PVA Blended Film Using Electrospray Technique for Food Packaging Applications[J]. International Journal of Biological Macromolecules, 2018,107:848⁃854. |
56 | 应丽莎, 赵东方, 付海姣, 等. 控释技术在食品活性包装中应用与研究[J]. 食品科学, 2012,33(9):335⁃340. |
YING L S, ZHAO D F, FU H J, et al. Advances in Research into Controlled⁃Release Technology and Its Application in Active Food Packaging[J]. Food Science, 2012,33(9):335⁃340. | |
57 | CANO A, CHAFER M, CHIRALT A, et al. Physical and Antimicrobial Properties of Starch⁃PVA Blend Films as Affected by the Incorporation of Natural Antimicrobial Agents[J]. Foods, 2016,5(3):1⁃17. |
58 | DEBIAGI F, KOBAYASHI R K T, NAKAZATO G, et al. Biodegradable Active Packaging Based on Cassava Bagasse, Polyvinyl Alcohol and Essential Oils[J]. Industrial Crops and Products, 2014,52:664⁃670. |
59 | LIN D, HUANG Y, LIU Y, et al. Physico⁃mechanical and Structural Characteristics of Starch/polyvinyl Alcohol/Nano⁃titania Photocatalytic Antimicrobial Composite Films[J]. LWT⁃Food Science and Technology, 2018,96:704⁃712. |
60 | USMAN A, HUSSAIN Z, RIAZ A, et al. Enhanced Mechanical, Thermal and Antimicrobial Properties of Poly(vinyl alcohol)/Graphene Oxide/Starch/Silver Nanocomposites Films[J]. Carbohydrate Polymers, 2016,153:592⁃599. |
61 | SARWAR M S, NIAZI M B K, JAHAN Z, et al. Preparation and Characterization of PVA/Nanocellulose/Ag Nanocomposite Films for Antimicrobial Food Packaging[J]. Carbohydrate Polymers, 2018,184:453⁃464. |
62 | DAS A, UPPALURI R, DAS C. Feasibility of Poly⁃vinyl Alcohol/Starch/Glycerol/Citric Acid Composite Films for Wound Dressing Applications[J]. International Journal of Biological Macromolecules, 2019,131:998⁃1007. |
63 | AKTÜRK A, EROL TAYGUN M, KARBANCıOĞLU GÜLER F, et al. Fabrication of Antibacterial Polyvinyl Alcohol Nanocomposite Mats with Soluble Starch Coated Silver Nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019,562:255⁃262. |
64 | ASWATHY J, HEERA K V, SUMI T S, et al. Starch⁃PVA Composite Films with Zinc⁃oxide Nanoparticles and Phytochemicals as Intelligent pH Sensing Wraps for Food Packaging Application[J]. International Journal of Biological Macromolecules, 2019,136:395⁃403. |
65 | 蓝鸿雁. 茶多酚缓释抗氧化膜的制备及其缓释性能研究[D]. 南宁:广西大学, 2017. |
66 | 陈智杰, 陈晨伟, 谢 晶. 活性包装薄膜的功能特性表征及对食品保鲜作用的研究进展[J]. 食品工业科技, 2020,41(3):229⁃344. |
CHEN Z G, CHEN C W, XIE J. Research Progress on Characterization of Functional Properties of Active Packaging Films and its Preservation Effect on Food[J]. Science and Technology of Food Industry, 2020,41(3):229⁃344. | |
67 | LUZI F, FORTUNATI E, DI MICHELE A, et al. Nanostructured Starch Combined with Hydroxytyrosol in Poly(vinyl alcohol) Based Ternary Films as Active Packaging System[J]. Carbohydrate Polymers, 2018,193:239⁃248. |
68 | SHOLICHAH E, NUGROHO P, PURWONO B. Preparation and Characterization of Active Film Made From Arrowroot Starch/PVA Film and Isolated Quercetin from Shallot (allium cepa l. var, aggregatum)[C]//4th International Symposium on Applied Chemistry (ISAC). Bumi Serpong Damai, Indonesia: Amer Inst Physics, 2 Huntington Quadrangle, Ste 1no1, Melville, NY 11747⁃4501 USA, 2018. |
69 | SONG X, ZUO G, CHEN F. Effect of Essential Oil and Surfactant on the Physical and Antimicrobial Properties of Corn and Wheat Starch Films[J]. International Journal of Biological Macromolecules, 2018,107:1 302⁃1 309. |
70 | FABRA M J, FALCÓ I, RANDAZZO W, et al. Antiviral and Antioxidant Properties of Active Alginate Edible Films Containing Phenolic Extracts[J]. Food Hydrocolloids, 2018,81:96⁃103. |
71 | KOCHKINA N E, BUTIKOVA O A. Effect of Fibrous TiO2 Filler on the Structural, Mechanical, Barrier and Optical Characteristics of Biodegradable Maize Starch/PVA Composite Films[J]. International Journal of Biological Macromolecules, 2019,139:431⁃439. |
72 | LIU B, XU H, ZHAO H, et al. Preparation and Characterization of Intelligent Starch/PVA Films for Simultaneous Colorimetric Indication and Antimicrobial Activity for Food Packaging Applications[J]. Carbohydrate Polymers, 2017,157:842⁃849. |
73 | PANRONG T, KARBOWIAK T, HARNKARNSUJARIT N. Thermoplastic Starch and Green Tea Blends with LLDPE Films for Active Packaging of Meat and Oil⁃based Products[J]. Food Packaging and Shelf Life, 2019,21:100331. |
74 | ROMANI V P, MARTINS V G, GODDARD J M. Radical Scavenging Polyethylene Films as Antioxidant Active Packaging Materials[J]. Food Control, 2020,109:106 946. |
75 | 徐梓轩, 丁姣, 周向阳, 等. 柠檬酸改性淀粉/PVA薄膜的制备及其对芒果保鲜的研究[J]. 仲恺农业工程学院学报, 2019,32(1):17⁃22. |
XU Z X, DING J, ZHOU X Y, et al. Preparation of Citric Acid Modified Starch/PVA Film and Its Application in Preservation of Mango[J]. Journal of Zhongkai University of Agriculture and Engineering, 2019,32(1):17⁃22. | |
76 | QIN Y, LIU Y, ZHANG X, et al. Development of Active and Intelligent Packaging by Incorporating Betalains from Red Pitaya (Hylocereus polyrhizus) Peel into Starch/Polyvinyl Alcohol Films[J]. Food Hydrocolloids, 2020,100:105 410. |
77 | ZHAI X, SHI J, ZOU X, et al. Novel Colorimetric Films Based on Starch/Polyvinyl Alcohol Incorporated with Roselle Anthocyanins for Fish Freshness Monitoring[J]. Food Hydrocolloids, 2017,69:308⁃317. |
[1] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[2] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[3] | 陈轲, 刘鸣飞, 赵彪, 潘凯. 有机硅改性高分子材料阻燃及耐烧蚀性能研究进展[J]. 中国塑料, 2022, 36(6): 149-154. |
[4] | 刘伟, 吴显, 陈小澄, 成晓琼, 张纯. 羧基化填料对聚乙烯醇/纳米纤维素水凝胶力学、导电和传感性能的影响[J]. 中国塑料, 2022, 36(6): 16-23. |
[5] | 邓天翔, 许利娜, 李守海, 张燕, 姚娜, 贾普友, 丁海阳, 李梅. PVC接枝改性及交联改性方法研究进展[J]. 中国塑料, 2022, 36(5): 140-148. |
[6] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
[7] | 李福杰, 齐斌, 徐华亭, 王立梅. 交联壳聚糖/聚乙烯醇/蜗牛黏液复合膜的制备及性能研究[J]. 中国塑料, 2022, 36(5): 53-61. |
[8] | 赵新新, 金晓冬, 施妍, 孙诗兵, 吕锋, 田英良, 赵志永. 基于紫外⁃臭氧辐照的挤塑聚苯乙烯表面改性研究[J]. 中国塑料, 2022, 36(5): 8-13. |
[9] | 陈文静, 杨小龙, 韩顺涛, 韩颖, 马秀清. 聚丙烯腈材料改性方法及研究进展[J]. 中国塑料, 2022, 36(4): 158-165. |
[10] | 董露茜, 徐芳, 翁云宣. 聚乙醇酸改性及其应用研究进展[J]. 中国塑料, 2022, 36(4): 166-174. |
[11] | 李素圆, 刘会鹏, 龚舜, 黄国桃, 李玉才, 吴鑫, 邓建平, 潘凯. 热塑性聚酰胺弹性体改性EVA复合发泡材料的制备及性能表征[J]. 中国塑料, 2022, 36(4): 6-14. |
[12] | 隋振全, 毛金超, 范金石. 壳聚糖/聚乙烯醇液态地膜的制备与应用[J]. 中国塑料, 2022, 36(3): 21-25. |
[13] | 马嘉森, 薛永兵, 郭旗, 刘振民. 废旧塑料改性剂改性沥青的研究进展[J]. 中国塑料, 2022, 36(2): 131-138. |
[14] | 仇洪波. 基于仿生学的木材超疏水表面改性研究进展[J]. 中国塑料, 2022, 36(2): 182-196. |
[15] | 李永青, 杨小龙, 陈文静, 闫晓堃, 马秀清. 改性剂及高密度聚乙烯插层和剥离蒙脱石的分子动力学模拟[J]. 中国塑料, 2022, 36(2): 67-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||