
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (4): 32-39.DOI: 10.19491/j.issn.1001-9278.2024.04.006
王晓辉1,2(), 董黎明1, 顾俊杰1, 么冰1, 陈艳1, 李靖1
收稿日期:
2023-09-06
出版日期:
2024-04-26
发布日期:
2024-04-22
作者简介:
王晓辉(1974-),男,博士,副教授,主要研究方向为功能高分子及其复合材料制备,wangxh@xzit.edu.cn
基金资助:
WANG Xiaohui1,2(), DONG Liming1, GU Junjie1, YAO Bing1, CHEN Yan1, LI Jing1
Received:
2023-09-06
Online:
2024-04-26
Published:
2024-04-22
摘要:
采用双酚A与低熔点、弱π⁃π堆积作用且活性略高于对苯二甲醛(TPD)的潜在生物质——间苯二甲醛(IPD)为单体,在开放与溶液共缩聚体系中,微波辅助合成数均相对分子质量(
中图分类号:
王晓辉, 董黎明, 顾俊杰, 么冰, 陈艳, 李靖. 2,6⁃单取代双酚A间苯二甲醛树脂的合成及其在可逆热敏变色复合NiBR膜中的应用[J]. 中国塑料, 2024, 38(4): 32-39.
WANG Xiaohui, DONG Liming, GU Junjie, YAO Bing, CHEN Yan, LI Jing. Synthesis of 2,6⁃monosubstituted bisphenol A isophthalaldehyde phenolic resin and its applications in reversible thermochromic composite NiBR film[J]. China Plastics, 2024, 38(4): 32-39.
官能团/键 | 所在区域 | 振动类型 | 取代类型 | 波数/cm-1 | 峰的强度(理论) |
---|---|---|---|---|---|
芳烃 | 特征区 | ν(Ar—H) | — | 3 085 | W |
ν(C=C) | — | 1 610 | S | ||
— | 1 597 | S | |||
— | 1 510 | S | |||
— | 1 461 | W | |||
指纹区 | δ(Ar—H) | — | 1 275~960左右 | W | |
γ(Ar—H) | 1, 2, 4⁃ | 757(孤立芳H), 5个H | M | ||
647(2个相邻H), 10个H | S | ||||
1, 3⁃ | 679(3个相邻H的中间位), 3个H | VS | |||
562、551、530(3个相邻H的间隔位), 裂分, 6个H | VS | ||||
825(孤立芳H), 3个H | M→S | ||||
1, 4⁃ | 723左右(2个相邻H), 4个H | VS | |||
1, 2, 3, 5⁃ | 845~640左右(孤立芳H) | × | |||
OH | 特征区 | ν(O—H) | — | 3 333 | S, w |
指纹区 | ν(C—O) | 5H位 | 1 232 | S | |
8H位 | 1 217 | S | |||
5H与8H位(共有) | 1 176 | S | |||
18H位、非端位 | 1 138 | S | |||
2H, 1H位 | 1 099、1 093 | W | |||
18H位、端位 | 1 083 | S | |||
δ(O—H) | — | 1 013 | S | ||
CHO (COOH) | 特征区 | C—H弯曲倍频与其伸缩的Fermi共振 | — | 2 722 | M |
— | 2 669 | M | |||
ν(C=O) | — | 1 731(酸), 1 703(醛) | S | ||
烷(羟)基 | 特征区 | ν(C—H) | — | 2 978(肩峰) | — |
δas [C—H(OH)] | — | 1 451左右(可能被包埋) | M | ||
δs [C—H(OH)] | — | 1 383 | M | ||
CH3—C—CH3 | 特征区 | ν(C—H) | — | 2 964 | — |
δas (C—H) | — | 1 444、1 434(分裂) | — | ||
δs (C—H) | — | 1 361 | |||
指纹区 | ν(C—C) | — | 1 250~800左右 | W | |
ν(C—C)(异丙基肩峰) | — | 1 295 | — |
官能团/键 | 所在区域 | 振动类型 | 取代类型 | 波数/cm-1 | 峰的强度(理论) |
---|---|---|---|---|---|
芳烃 | 特征区 | ν(Ar—H) | — | 3 085 | W |
ν(C=C) | — | 1 610 | S | ||
— | 1 597 | S | |||
— | 1 510 | S | |||
— | 1 461 | W | |||
指纹区 | δ(Ar—H) | — | 1 275~960左右 | W | |
γ(Ar—H) | 1, 2, 4⁃ | 757(孤立芳H), 5个H | M | ||
647(2个相邻H), 10个H | S | ||||
1, 3⁃ | 679(3个相邻H的中间位), 3个H | VS | |||
562、551、530(3个相邻H的间隔位), 裂分, 6个H | VS | ||||
825(孤立芳H), 3个H | M→S | ||||
1, 4⁃ | 723左右(2个相邻H), 4个H | VS | |||
1, 2, 3, 5⁃ | 845~640左右(孤立芳H) | × | |||
OH | 特征区 | ν(O—H) | — | 3 333 | S, w |
指纹区 | ν(C—O) | 5H位 | 1 232 | S | |
8H位 | 1 217 | S | |||
5H与8H位(共有) | 1 176 | S | |||
18H位、非端位 | 1 138 | S | |||
2H, 1H位 | 1 099、1 093 | W | |||
18H位、端位 | 1 083 | S | |||
δ(O—H) | — | 1 013 | S | ||
CHO (COOH) | 特征区 | C—H弯曲倍频与其伸缩的Fermi共振 | — | 2 722 | M |
— | 2 669 | M | |||
ν(C=O) | — | 1 731(酸), 1 703(醛) | S | ||
烷(羟)基 | 特征区 | ν(C—H) | — | 2 978(肩峰) | — |
δas [C—H(OH)] | — | 1 451左右(可能被包埋) | M | ||
δs [C—H(OH)] | — | 1 383 | M | ||
CH3—C—CH3 | 特征区 | ν(C—H) | — | 2 964 | — |
δas (C—H) | — | 1 444、1 434(分裂) | — | ||
δs (C—H) | — | 1 361 | |||
指纹区 | ν(C—C) | — | 1 250~800左右 | W | |
ν(C—C)(异丙基肩峰) | — | 1 295 | — |
相别 | 考察变量 | 实验组别 | 结晶限/℃ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
分散相 | CVL∶BPA⁃IPD | 1∶1.0 | 57.0 | 42 | 1.43 | 26~37 | 37~48 | 11 | 62 | 17 | 53 |
1∶1.5 | 87.2 | 40 | 2.18 | 23~36 | 36~46 | 8 | 61 | 16 | 42 | ||
1∶2.0 | 83.4 | 39 | 2.14 | 23~36 | 36~46 | 6 | 54 | 13 | 33 | ||
1∶2.5 | 78.2 | 42 | 1.86 | 22~35 | 35~45 | 5 | 50 | 13 | 31 | ||
1∶3.0 | 72.8 | 48 | 1.52 | 21~34 | 35~44 | 5 | 43 | 11 | 29 | ||
1∶3.5 | 67.7 | 50 | 1.35 | 20~34 | 35~44 | 4 | 38 | 10 | 28 | ||
CVL∶(十六醇+十八醇) | 1∶10 | 71.8 | 21 | 3.42 | 24~35 | 35~42 | 2 | 27 | 6 | 13 | |
1∶20 | 76.2 | 31 | 2.46 | 24~34 | 36~44 | 3 | 28 | 7 | 20 | ||
1∶30 | 79.8 | 36 | 2.22 | 23~34 | 37~45 | 3 | 33 | 8 | 34 | ||
1∶40 | 81.8 | 38 | 2.13 | 23~33 | 37~47 | 5 | 45 | 12 | 37 | ||
1∶50 | 88.2 | 43 | 2.04 | 24~35 | 38~47 | 12 | 48 | 12 | 45 | ||
1∶60 | 80.7 | 46 | 1.75 | 24~36 | 37~46 | 17 | 53 | 13 | 52 | ||
十六醇∶十八醇 | 0.38∶0.00 | 81.9 | 25 | 3.28 | — | 35~39 | — | 106 | — | 100 | |
0.30∶0.08 | 86.3 | 32 | 2.70 | 22~32 | 36~41 | 2 | 53 | 14 | 39 | ||
0.23∶0.15 | 91.6 | 43 | 2.13 | 23~34 | 37~44 | 13 | 46 | 16 | 41 | ||
0.15∶0.23 | 87.0 | 37 | 2.35 | 26~38 | 39~46 | 4 | 48 | 15 | 37 | ||
0.08∶0.30 | 82.5 | 28 | 2.95 | 37~43 | 43~47 | 2 | 71 | 16 | 58 | ||
0.00∶0.38 | 72.1 | 17 | 4.24 | — | 44~49 | — | 98 | — | 105 | ||
连续相 | CVL∶NiBR | 1∶10 | 80.0 | 28 | 2.86 | 25~37 | 37~46 | 5 | 70 | 18 | 48 |
1∶20 | 81.5 | 31 | 2.63 | 25~37 | 38~46 | 6 | 78 | 19 | 52 | ||
1∶30 | 84.2 | 34 | 2.48 | 24~36 | 38~47 | 10 | 79 | 20 | 55 | ||
1∶40 | 86.2 | 35 | 2.46 | 24~36 | 37~46 | 7 | 82 | 20 | 43 | ||
1∶50 | 88.0 | 36 | 2.44 | 24~36 | 36~45 | 5 | 52 | 15 | 35 | ||
1∶60 | 88.2 | 44 | 2.00 | 23~36 | 36~44 | 5 | 50 | 14 | 31 |
相别 | 考察变量 | 实验组别 | 结晶限/℃ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
分散相 | CVL∶BPA⁃IPD | 1∶1.0 | 57.0 | 42 | 1.43 | 26~37 | 37~48 | 11 | 62 | 17 | 53 |
1∶1.5 | 87.2 | 40 | 2.18 | 23~36 | 36~46 | 8 | 61 | 16 | 42 | ||
1∶2.0 | 83.4 | 39 | 2.14 | 23~36 | 36~46 | 6 | 54 | 13 | 33 | ||
1∶2.5 | 78.2 | 42 | 1.86 | 22~35 | 35~45 | 5 | 50 | 13 | 31 | ||
1∶3.0 | 72.8 | 48 | 1.52 | 21~34 | 35~44 | 5 | 43 | 11 | 29 | ||
1∶3.5 | 67.7 | 50 | 1.35 | 20~34 | 35~44 | 4 | 38 | 10 | 28 | ||
CVL∶(十六醇+十八醇) | 1∶10 | 71.8 | 21 | 3.42 | 24~35 | 35~42 | 2 | 27 | 6 | 13 | |
1∶20 | 76.2 | 31 | 2.46 | 24~34 | 36~44 | 3 | 28 | 7 | 20 | ||
1∶30 | 79.8 | 36 | 2.22 | 23~34 | 37~45 | 3 | 33 | 8 | 34 | ||
1∶40 | 81.8 | 38 | 2.13 | 23~33 | 37~47 | 5 | 45 | 12 | 37 | ||
1∶50 | 88.2 | 43 | 2.04 | 24~35 | 38~47 | 12 | 48 | 12 | 45 | ||
1∶60 | 80.7 | 46 | 1.75 | 24~36 | 37~46 | 17 | 53 | 13 | 52 | ||
十六醇∶十八醇 | 0.38∶0.00 | 81.9 | 25 | 3.28 | — | 35~39 | — | 106 | — | 100 | |
0.30∶0.08 | 86.3 | 32 | 2.70 | 22~32 | 36~41 | 2 | 53 | 14 | 39 | ||
0.23∶0.15 | 91.6 | 43 | 2.13 | 23~34 | 37~44 | 13 | 46 | 16 | 41 | ||
0.15∶0.23 | 87.0 | 37 | 2.35 | 26~38 | 39~46 | 4 | 48 | 15 | 37 | ||
0.08∶0.30 | 82.5 | 28 | 2.95 | 37~43 | 43~47 | 2 | 71 | 16 | 58 | ||
0.00∶0.38 | 72.1 | 17 | 4.24 | — | 44~49 | — | 98 | — | 105 | ||
连续相 | CVL∶NiBR | 1∶10 | 80.0 | 28 | 2.86 | 25~37 | 37~46 | 5 | 70 | 18 | 48 |
1∶20 | 81.5 | 31 | 2.63 | 25~37 | 38~46 | 6 | 78 | 19 | 52 | ||
1∶30 | 84.2 | 34 | 2.48 | 24~36 | 38~47 | 10 | 79 | 20 | 55 | ||
1∶40 | 86.2 | 35 | 2.46 | 24~36 | 37~46 | 7 | 82 | 20 | 43 | ||
1∶50 | 88.0 | 36 | 2.44 | 24~36 | 36~45 | 5 | 52 | 15 | 35 | ||
1∶60 | 88.2 | 44 | 2.00 | 23~36 | 36~44 | 5 | 50 | 14 | 31 |
1 | Anna Liguori, Stefano Pandini, Chiara Rinoldi, et al. Thermoactive smart electrospun nanofibers[J]. Macromolecular Rapid Communications, 2022, 43(5): 2100694. |
2 | Zhai Xinyu, Wu Zide, Peng Hao,et al. Minireview on application of microencapsulated phase change materials with reversible chromic function: advances and perspectives[J]. Energy Fuels, 2022, 36(15): 8 054⁃8 065. |
3 | Crosby Patrice H N, Netravali Anil N. Green thermochromic materials: a brief review[J]. Advanced Sustainable Systems, 2022, 6(9): 2200208. |
4 | 徐慧宁, 王浩达, 冀卫东, 等. 路面低温变色复配物的制备及热色特性[J]. 中国公路学报, 2022,35(7): 55⁃66. |
XU H N, WANG H D, JI W D, et al. Study on preparation and thermochromic properties of pavement low temperature reversible thermochromic compounds[J]. China Journal of Highway and Transport, 2022, 35(7): 55⁃66. | |
5 | 胡 琴, 黄洪松, 赵法强, 等. 三芳甲烷类电气设备可逆示温材料的制备与性能测试[J]. 高电压技术, 2022,48(1): 281⁃288. |
HU Q, HUANG H S, ZHAO F Q, et al. Preparation and performance test of triarylmethane reversible temperature⁃indicating material for electrical equipment[J]. High Voltage Engineering, 2022,48(1): 281⁃288. | |
6 | Li Baixue, Luo Zhuo, Yang Weiguang, et al. Adaptive and adjustable mxene/reduced graphene oxide hybrid aerogel composites integrated with phase⁃change material and thermochromic coating for synchronous visible/infrared camouflages[J]. American Chemical Society Nano, 2023, 17(7): 6 875⁃6 885. |
7 | Liu Danfei, Zhang Changfan, Chen Siyuan, et al. Reversible thermochromic ink based on crystal violet lactone/boric acid/hexadecyl alcohol for anti⁃counterfeiting printing[J]. Journal of Imaging Science and Technology, 2022, 66(2): 020405. |
8 | Raquel Gavara, César A T Laia, Jorge Parola A, et al. Formation of a leuco spirolactone from 4⁃(2⁃carboxyphenyl)-7⁃diethylamino-4'⁃dimethylamino-1⁃benzopyrylium: design of a phase⁃change thermochromic system based on a flavylium dye[J]. Chemistry⁃A European Journal, 2010, 16(26): 7 760⁃7 766. |
9 | 娄鸿飞, 马腾骄, 朱爱华, 等. 自适应可逆温致变色复配物的变色与老化失效机制研究[J]. 复旦学报(自然科学版), 2022,61(2): 222⁃228, 237. |
LOU H F, MA T J, ZHU A H,et al. Study on thermochromic and aging failure mechanism of adaptive reversible thermochromic complex[J]. Journal of Fudan University (Natural Science), 2022,61(2): 222⁃228, 237. | |
10 | Chen Luzhuo, Weng Mingcen, Huang Feng, et al. Long⁃lasting and easy⁃to⁃use rewritable paper fabricated by printing technology[J]. ACS Applied Materials Interfaces, 2018, 10(46): 40 149⁃40 155. |
11 | Selda Tözüm M, Cemil Alkan, Alay Aksoy Sennur. Preparation of poly(methyl methacrylate⁃co⁃ethylene glycol dimethacrylate⁃co⁃glycidyl methacrylate) walled thermochromic microcapsules and their application to cotton fabrics[J]. Journal of Applied Polymer Science, 2020, 137(24): 48815. |
12 | Selda Tözüm M, Cemil Alkan, Aksoy Sennur Alay. Developing of thermal energy storing visual textile temperature indicators based on reversible color change[J]. Journal of Industrial Textiles, 2022, 51(2): 1964S-1988S. |
13 | 张智薇, 刘红茹, 王晓春, 等. 三元复配物变色性能的研究[J]. 化工新型材料, 2022, 50(12): 176⁃180. |
ZHANG Z W, LIU H R, WANG X C, et al. Influence of alcohol solvent of thermochromic complex and its preparation[J]. New Chemical Materials, 2022, 50(12): 176⁃180. | |
14 | Abdullatif Hakami, Sharan Indrakar, Ashwini Krishnegowda, et al. Microencapsulation of thermochromic material by silicon oxide nanoparticles[J]. Key Engineering Materials, 2021, 878: 41⁃48. |
15 | Heng Yingqi, Feng Nianrong, Liang Yexin, et al. Lignin⁃retaining porous bamboo⁃based reversible thermochromic phase change energy storage composite material[J]. International Journal of Energy Research, 2020, 44(7): 5 441⁃5 454. |
16 | 耿晓叶. 可逆热致变色相变储能材料微胶囊的制备、表征及性能研究[D]. 天津:天津工业大学, 2021. |
17 | Wang Shuoshuo, Yi Liqiang, Fang Yini, et al. Reversibly thermochromic and high strength core:hell nanofibers fabricated by melt coaxial electrospinning[J]. Journal of Applied Polymer Science, 2021, 138(21): 50465. |
18 | He Yayue, Li Wei, Han Na, et al. Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor[J]. Applied Energy, 2019, 247: 615⁃629. |
19 | Wang Xinmiao, Wang Xingxing, Cui Yifan. Methyl red modified crystal violet lactone microcapsules for natural and composite fabrics producing a violet to orange⁃red effect at low temperature[J]. Materials Chemistry and Physics, 2023, 305: 127901. |
20 | 王晓辉, 董黎明, 于克凡, 等. BPA芳香酚醛树脂及其可逆热敏变色SSBR复合膜的制备[J]. 合成树脂及塑料, 2023, 40(6):26⁃32. |
WANG X H, DONG L M, YU K F, et al. Preparation of IPD⁃BPA⁃TPD and its reversible thermochromic SSBR composite film [J]. China Synthetic Resin and Plastics, 2023, 40(6):26⁃32. | |
21 | 王晓辉, 董黎明, 冯 玉, 等. 2,6⁃单取代芳香酚醛树脂及其复合膜的可逆热敏变色性能[J].塑料科技, 2023, 51(11):10⁃15. |
WANG X H, DONG L M, FENG Y, et al. Reversible thermochromic properties of 2,6⁃monosubstituted aromatic phenolic resin’s composite film [J]. Plastics Science and Technology, 2023, 51(11):10⁃15. | |
22 | Amalid Mahmud⁃Ali, Christa Fitz⁃Binder, Thomas Bechtold. Aluminium based dye lakes from plant extracts for textile coloration[J]. Dyes and Pigments, 2012, 94(3): 533⁃540. |
23 | Wang Xiaohui, Dong Liming, Wang Shifan, et al. Study on 2,6⁃monosubstituted bisphenol A isophthalaldehyde phenolic resin and its reversible thermochromic composite SSBR film[J]. Russian Journal of Applied Chemistry, 2023, 96(1): 108⁃117. |
24 | 郭 睿, 闫育蒙, 马丽娟, 等. 双酚A戊二醛酚醛树脂的合成及表征[J]. 中国胶粘剂, 2020, 29(4): 23⁃28. |
GUO R, YAN Y M, MA L J, et al. Synthesis and characterization of bisphenol A⁃glutaraldehyde phenolic resin[J]. China Adhesives, 2020, 29(4): 23⁃28. | |
25 | Pierce Karisa M, Hope Janiece L, Johnson Kevin J, et al. Classification of gasoline data obtained by gas chromatography using a piecewise alignment algorithm combined with feature selection and principal component analysis[J]. Journal of Chromatography A, 2005, 1096(1⁃2): 101⁃110. |
26 | 尹凤福, 张 超, 庄虔晓, 等.废旧橡胶裂解机理的研究[J]. 橡胶工业, 2020, 67(9): 664⁃669. |
YIN F F, ZHANG C, ZHUANG Q X, et al. Study on cracking mechanism of waste rubber[J]. Rubber Industry, 2020, 67(9): 664⁃669. | |
27 | Gao Jungang, Zhang Xuefang, Lv Hongqiu. Curing, thermal properties and flame resistance of tetrabromo⁃BPA epoxy resin/boron⁃containing phenol resin[J]. Advanced Materials Research, 2011, 239⁃242: 1 022⁃1 025. |
28 | Liu Lijia, Wang Feng, Zhang Chunyu. Thermally robust α⁃diimine nickel and cobalt complexes for cis-1,4 selective 1,3⁃butadiene polymerizations[J]. Molecular Catalysis, 2022, 517: 112044. |
29 | Liu Jiayin, Yin Yunjie, Sun Juanjuan, et al. A new finding of reverse three⁃component thermochromic pigments using biomass⁃derived L⁃ascorbyl palmitate color developer[J]. Progress in Organic Coatings, 2022, 173: 107159. |
30 | Gao Yan, Liu Xiaoyan, HaoHongfei,et al. Preparation of tetradecanol⁃hexadecanol binary mixture thermochromic materials[J]. Journal of Textile Research, 2016, 37(1): 70⁃74. |
31 | Li Yongzhen, Wang Xungai, Peng Zheng, et al. Fabrication and properties of elastic fibers from electrospinning natural rubber[J]. Journal of Applied Polymer Science, 2019, 136(43): 48153. |
32 | Alireza Banan, Hossein Mehdipour. Controlled degradation and functionalization of natural rubber by ozonolysis in organic solvent[J]. Journal of Polymer Research, 2021, 28(9): 10965⁃021⁃02671⁃2. |
[1] | 李丹, 赵彪, 陈轲, 王帆, 张靖宇, 张凤波, 潘凯. 中空聚丙烯纤维制备及应用研究进展[J]. 中国塑料, 2023, 37(9): 109-114. |
[2] | 孙子佳, 雒翠梅, 王启航, 王旭洁, 母军. ODA⁃TA@L⁃CNC的制备及对多功能PLA复合膜的影响[J]. 中国塑料, 2023, 37(12): 14-22. |
[3] | 孙子佳 雒翠梅 王启航 王旭洁 母军. ODA-TA@L-CNC的制备及对多功能PLA复合膜的影响[J]. , 2023, 37(12): 14-22. |
[4] | 张超, 徐双平, 贾宏葛, 张明宇, 蘧延庆, 徐靖宇. 类石墨烯氮化碳制备及其在气体分离领域中应用的研究进展[J]. 中国塑料, 2023, 37(11): 62-73. |
[5] | 董少策, 李承高, 张旭锋, 咸贵军. 植物纤维纸蜂窝制备的环境影响评价[J]. 中国塑料, 2022, 36(6): 108-115. |
[6] | 杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173. |
[7] | 刘文, 师文钊, 刘瑾姝, 陆少锋, 周红娟. 电致形状记忆复合材料研究进展[J]. 中国塑料, 2022, 36(4): 175-189. |
[8] | 黎玉山, 李杰. PDMS耐久性超疏水表面的研究进展[J]. 中国塑料, 2022, 36(3): 167-176. |
[9] | 谢玉, 王立梅, 齐斌. 交联壳聚糖/蒙脱土复合膜的制备及性能研究[J]. 中国塑料, 2022, 36(3): 58-63. |
[10] | 刘延宽, 顾子琛, 王志平. 连续纤维增强热塑性预浸料制备工艺与发展趋势[J]. 中国塑料, 2022, 36(2): 172-181. |
[11] | 李宁利, 王猛, 王瑞, 朱壮壮. 橡塑合金改性沥青制备工艺关键参数研究[J]. 中国塑料, 2022, 36(12): 78-85. |
[12] | 张周雅, 白世建, 张玉霞, 周洪福, 宫芳芳, 唐雪古丽, 王斌. 高分子材料导热性能影响因素研究进展[J]. 中国塑料, 2021, 35(9): 156-165. |
[13] | 张一辉, 王从龙, 陈士宏, 王向东. 聚醚酰亚胺发泡技术研究进展[J]. 中国塑料, 2021, 35(4): 124-132. |
[14] | 杨小龙, 李永青, 闫晓堃, 陈文静, 马秀清. 聚合物/石墨烯阻气型复合材料的研究进展[J]. 中国塑料, 2021, 35(12): 145-153. |
[15] | 方云峰, 马骉, 王小庆, 康兴祥, 汤宇婷. 单组分环氧树脂用潜伏型固化剂研究进展[J]. 中国塑料, 2021, 35(12): 154-165. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||