
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (2): 182-196.DOI: 10.19491/j.issn.1001-9278.2022.02.024
收稿日期:
2021-08-16
出版日期:
2022-02-26
发布日期:
2022-02-23
作者简介:
仇洪波(1989—),男,讲师,从事生物质材料功能化改性研究,947759364@qq.com
基金资助:
Received:
2021-08-16
Online:
2022-02-26
Published:
2022-02-23
摘要:
介绍了超疏水理论模型及天然超疏水表面仿生机制;综述了国内外关于木材超疏水表面的构建方法,包括模板印刷法、刻蚀法、接枝共聚法、溶胶?凝胶法等,分析了不同超疏水表面构建方法的优缺点及存在的问题,并阐述了超疏水木材的应用前景;最后,对超疏水木材研究中存在的一些问题及未来的发展趋势进行了总结与展望。
中图分类号:
仇洪波. 基于仿生学的木材超疏水表面改性研究进展[J]. 中国塑料, 2022, 36(2): 182-196.
QIU Hongbo. Research progress in superhydrophobic wood surface based on bionic technology[J]. China Plastics, 2022, 36(2): 182-196.
类型 | 制备方法 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
自上而下方法 | 自然基底模板法 | 基底材料来源广泛,操作简单,成本低 | 难以大规模生产,复制过程中结构易变形 | [ |
人工基底模板法 | 可大规模生产,操作方便,可重复使用 | 需要昂贵的刻蚀设备,剥离时容易破坏结构 | [ | |
等离子体刻蚀法 | 操作简单,表面均匀性好 | 设备比较昂贵,反应条件苛刻 | [ | |
化学刻蚀法 | 成本低,适合工业化生产,界面结合强度高 | 化学试剂污染环境,破坏基材结构、强度降低 | [ | |
自下而上方法 | 接枝共聚法 | 操作简单,性能稳定,耐久性好 | 耗时长,成本高,污染环境 | [ |
溶胶⁃凝胶法 | 各种体系已基本成熟,制备工艺简单, 反应条件温和,成本较低 | 溶胶和凝胶过程难以控制,溶液稳定性差 | [ | |
CVD法 | 实验参数可调控,制备的涂层更均匀精细 | 需要昂贵的设备、高温等反应条件,有毒和腐蚀性气体污染环境 | [ | |
浸涂、喷涂法 | 适合大面积生产,操作简单,成本低 | 需要专门的设备,涂层与基材附着强度差 | [ | |
层层自组装法 | 操作简便,组装程度、结构容易控制 | 耗时较长,制备效率低 | [ | |
水热法 | 制备原理简单,可通过调节反应条件控制材料的形貌和尺寸 | 需要专门的反应设备,对温度、压力要求高, 不适合大面积制备 | [ |
类型 | 制备方法 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
自上而下方法 | 自然基底模板法 | 基底材料来源广泛,操作简单,成本低 | 难以大规模生产,复制过程中结构易变形 | [ |
人工基底模板法 | 可大规模生产,操作方便,可重复使用 | 需要昂贵的刻蚀设备,剥离时容易破坏结构 | [ | |
等离子体刻蚀法 | 操作简单,表面均匀性好 | 设备比较昂贵,反应条件苛刻 | [ | |
化学刻蚀法 | 成本低,适合工业化生产,界面结合强度高 | 化学试剂污染环境,破坏基材结构、强度降低 | [ | |
自下而上方法 | 接枝共聚法 | 操作简单,性能稳定,耐久性好 | 耗时长,成本高,污染环境 | [ |
溶胶⁃凝胶法 | 各种体系已基本成熟,制备工艺简单, 反应条件温和,成本较低 | 溶胶和凝胶过程难以控制,溶液稳定性差 | [ | |
CVD法 | 实验参数可调控,制备的涂层更均匀精细 | 需要昂贵的设备、高温等反应条件,有毒和腐蚀性气体污染环境 | [ | |
浸涂、喷涂法 | 适合大面积生产,操作简单,成本低 | 需要专门的设备,涂层与基材附着强度差 | [ | |
层层自组装法 | 操作简便,组装程度、结构容易控制 | 耗时较长,制备效率低 | [ | |
水热法 | 制备原理简单,可通过调节反应条件控制材料的形貌和尺寸 | 需要专门的反应设备,对温度、压力要求高, 不适合大面积制备 | [ |
树种 | 制备方法 | 疏水性试剂 | 接触角/(°) | 应用 | 文献 |
---|---|---|---|---|---|
桉木 | 溶胶⁃凝胶法 | 正硅酸乙酯/全氟癸基三氯硅烷 | 159 | 自清洁 | [ |
椴木 | 喷涂法 | SiO2/全氟癸基三乙氧基硅烷/环氧树脂 | 155 | 自清洁、热能存储 | [ |
杉木 | 浇筑法 | SiO2/全氟辛基三乙氧基硅烷 | 160 | 自清洁、耐久性防护层 | [ |
杉木 | 喷涂法 | 全氟烷基甲基丙烯酸共聚物/PDMS/TiO2 | 150 | 自清洁、耐久性防护层 | [ |
松木 | 浸渍法 | HDTMS/MTMS | 157.9 | 耐久性防护层 | [ |
椴木 | 浸渍法 | HDTMS/MTMS | 162.9 | 耐久性防护层 | [ |
未提到 | 化学沉积法 | Cu/AgNO3 | 160.5 | 耐久性防护层 | [ |
椴木 | 接枝共聚法 | 三氯甲基硅烷 | 153 | 油水分离 | [ |
巴尔沙木 | CVD法 | MTMS | 151 | 油水分离 | [ |
巴尔沙木 | 浸渍法 | 甲基丙烯酸甲酯/掺杂元素的铝锶化合物 | 162.8 | 智能窗户 | [ |
树种 | 制备方法 | 疏水性试剂 | 接触角/(°) | 应用 | 文献 |
---|---|---|---|---|---|
桉木 | 溶胶⁃凝胶法 | 正硅酸乙酯/全氟癸基三氯硅烷 | 159 | 自清洁 | [ |
椴木 | 喷涂法 | SiO2/全氟癸基三乙氧基硅烷/环氧树脂 | 155 | 自清洁、热能存储 | [ |
杉木 | 浇筑法 | SiO2/全氟辛基三乙氧基硅烷 | 160 | 自清洁、耐久性防护层 | [ |
杉木 | 喷涂法 | 全氟烷基甲基丙烯酸共聚物/PDMS/TiO2 | 150 | 自清洁、耐久性防护层 | [ |
松木 | 浸渍法 | HDTMS/MTMS | 157.9 | 耐久性防护层 | [ |
椴木 | 浸渍法 | HDTMS/MTMS | 162.9 | 耐久性防护层 | [ |
未提到 | 化学沉积法 | Cu/AgNO3 | 160.5 | 耐久性防护层 | [ |
椴木 | 接枝共聚法 | 三氯甲基硅烷 | 153 | 油水分离 | [ |
巴尔沙木 | CVD法 | MTMS | 151 | 油水分离 | [ |
巴尔沙木 | 浸渍法 | 甲基丙烯酸甲酯/掺杂元素的铝锶化合物 | 162.8 | 智能窗户 | [ |
1 | ZELINKS S L , KIRKER G T , BISHELL A B , et al . Effects of wood moisture content and the level of acetylation on brown rot decay[J]. Forests, 2020, 11(3): 1⁃10. |
2 | ALTGEN M , AWAIS M , ALTGEN D , et al . Distribution and curing reactions of melamine formaldehyde resin in cells of impregnation⁃modified wood[J]. Scientific Reports, 2020, 10(1): 1⁃10. |
3 | LIU M , GUO F , WANG H , et al . Highly stable wood material with low resin consumption via vapor phase furfurylation in cell walls[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(37): 13 924⁃13 933. |
4 | BARTHLOTT W , NEINHUIS C . Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1⁃8. |
5 | FEI L , HE Z , LACOSTE J D , et al . A mini review on superhydrophobic and transparent surfaces[J]. The Chemical Record, 2020, 20(11): 1 257⁃1 268. |
6 | ERAL H B , OH J M . Contact angle hysteresis: a review of fundamentals and applications[J]. Colloid and polymer science, 2013, 291(2): 247⁃260. |
7 | BHATTACHARYYA R . Technological applications of superhydrophobic coatings: needs and challenges[D]. Bombay:Indian Institute of Technology, 2009. |
8 | WU Y , QIAN Z , LEI Y , et al . Superhydrophobic modification of cellulose film through light curing polyfluoro resin in situ[J]. Cellulose, 2018, 25(3): 1 617⁃1 623. |
9 | WEI D W , WEI H , GAUTHIER A C , et al . Superhydrophobic modification of cellulose and cotton textiles: Metho⁃dologies and applications[J]. Journal of Bioresources and Bioproducts, 2020, 5(1): 1⁃15. |
10 | 廖正芳,张伟,孟小琪,等 .基于单宁酸制备可喷涂超疏水材料[J].精细化工,2020,37(5):893⁃897,918. |
LIAO Z F , ZHANG W , MENG X Q , et al . Preparation of sprayable superhydrophobic materials based on tannic acid[J]. Fine Chemicals, 2020, 37(5):893⁃897,918. | |
11 | 王秋雨,乌日娜,王高升 .纤维素基超疏水材料的研究概况[J].中国造纸,2019,38(9):69⁃73. |
WANG Q Y , WU R N , WAN G S . Research progress of cellulose based super⁃hydrophobic materials[J]. China Pulp & Paper, 2019, 38(9): 69⁃73. | |
12 | YIN Y , HUANG R , ZHANG W , et al . Superhydrophobic⁃superhydrophilic switchable wettability via TiO2 photoinduction electrochemical deposition on cellulose substrate[J]. Chemical Engineering Journal, 2016, 289: 99⁃105. |
13 | XIE L , TANG Z , JIANG L , et al . Creation of superhydrophobic wood surfaces by plasma etching and thin⁃film deposition[J]. Surface and coatings technology, 2015, 281: 125⁃132. |
14 | TEISALA H , TUOMINEN M , KUUSIPALO J . Superhydrophobic coatings on cellulose⁃based materials: fabrication, properties, and applications[J]. Advanced Materials Interfaces, 2014, 1(1): 1300026. |
15 | YOUNG T. III . An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1 805,95: 65⁃87. |
16 | WENZEL R N . Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988⁃994. |
17 | ZHU M , ZUO W , YU H , et al . Superhydrophobic surface directly created by electrospinning based on hydrophi⁃lic material[J]. Journal of materials science, 2006, 41(12): 3 793⁃3 797. |
18 | CASSIE A B D , BAXTER S . Wettability of porous surfaces[J]. Transactions of the Faraday society, 1944, 40: 546⁃551. |
19 | 朱朋辉,陈港,文执成 .超疏水纸张的制备及其应用的研究进展[J].造纸科学与技术,2017,36(1):40⁃45. |
ZHU P H , CHEN G , WEN Z C . Research progress in preparation and application of superhydrophobic papers[J]. Paper Science & Technology, 2017, 36(1): 40⁃45. | |
20 | 滕玉红, 王思佳, 葛梦晗,等 . 仿生超疏水表面的构建及应用研究进展[J]. 上海包装, 2018, 284(10):42⁃46. |
21 | SI Y , DONG Z , JIANG L . Bioinspired designs of superhydrophobic and superhydrophilic materials[J]. ACS central science, 2018, 4(9): 1 102⁃1 112. |
22 | JIN M , XING Q , CHEN Z . A review: natural superhydrophobic surfaces and applications[J]. Journal of Biomaterials and Nanobiotechnology, 2020, 11(2): 110. |
23 | JEEVAHAN J , CHANDRASEKARAN M , JOSEPH G B , et al . Superhydrophobic surfaces: a review on fundamentals, applications, and challenges[J]. Journal of Coa⁃tings Technology and Research, 2018, 15(2): 231⁃250. |
24 | SAS I , GORGA R E , JOINES J A , et al . Literature review on superhydrophobic self‐cleaning surfaces produced by electrospinning[J]. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(12): 824⁃845. |
25 | 赵美蓉,周惠言,康文倩,等 .超疏水表面制备方法的比较[J].复合材料学报,2021,38(2):361⁃379. |
ZHAO M R , ZHOU H Y , KANG W Q , et al . Comparison of methods for fabricating superhydrophobic surface[J]. Acta Materiae Compositae Sinica,2021,38(2):361⁃379. | |
26 | GUAN H , HAN Z , CAO H , et al . Characterization of multi⁃scale morphology and superhydrophobicity of water bamboo leaves and biomimetic polydimethylsiloxane (PDMS) replicas[J]. Journal of Bionic Engineering, 2015, 12(4): 624⁃633. |
27 | 杨晓华,肖建华,欧军飞 .仿美人蕉微纳结构制备超疏水材料[J].中国塑料,2013,27(8):77⁃80. |
YANG X H , XIAO J H , OU J F . Preparation of super⁃hydrophobic material by imitating the micro⁃nano structure of canna leaf[J]. China Plastics, 2013, 27(8): 77⁃80. | |
28 | 杨玉山,沈华杰,邱坚 .基于模板印刷法的仿生超疏水木材的研制[J].西南林业大学学报(自然科学),2018,38(6):187⁃191. |
YANG Y S , SHEN H J , QIU J . Biomimetic superhydrophobic wood based on template imprint[J]. Journal of Southwest Forestry University, 2018, 38(6): 187⁃191. | |
29 | GHASEMLOU M , DAVER F , IVANOVA E P , et al . Bio⁃inspired sustainable and durable superhydrophobic materials: from nature to market[J]. Journal of Materials Chemistry A, 2019, 7(28): 16 643⁃16 670. |
30 | YANG Y , HE H , LI Y , et al . Using nanoimprint lithography to create robust, buoyant, superhydrophobic PVB/SiO2 coatings on wood surfaces inspired by red roses petal[J]. Scientific reports, 2019, 9(1): 1⁃9. |
31 | BAO W , LIANG D , ZHANG M , et al . Durable, high conductivity, superhydrophobicity bamboo timber surface for nanoimprint stamps[J]. Progress in Natural Science: Materials International, 2017, 27(6): 669⁃673. |
32 | ZHENG Z , ZENG Y , YAO R , et al . All⁃sputtered, flexi⁃ble, bottom⁃gate IGZO/Al2O3 bi⁃layer thin film transistors on PEN fabricated by a fully room temperature process[J]. Journal of Materials Chemistry C, 2017, 5(28): 7 043⁃7 050. |
33 | SUN J , BHUSHAN B . Nanomanufacturing of bioinspired surfaces[J]. Tribology International, 2019, 129: 67⁃74. |
34 | 解林坤,郑绍江,杜官本 .木材表面等离子体刻蚀和沉积碳氟薄膜的超疏水性[J].林业科学,2017,53(4):121⁃128. |
XIE L K , ZHENG S J , DU G B . The superhydrophobic properties for wood surfaces by plasma etching and deposition of fluorocarbon film[J]. Scientia Silvae Sinicae, 2017, 53(4): 121⁃128. | |
35 | CORTESE B , CASCHERA D , FEDERICI F , et al . Superhydrophobic fabrics for oil–water separation through a diamond like carbon (DLC) coating[J]. Journal of Materials Chemistry A, 2014, 2(19): 6 781⁃6 789. |
36 | KIM S , KIM K , JUN G , et al . Wood⁃nanotechnology⁃based membrane for the efficient purification of oil⁃in⁃water emulsions[J]. ACS nano, 2020, 14(12): 17 233⁃17 240. |
37 | WANG K , LIU X , TAN Y , et al . Two⁃dimensional membrane and three⁃dimensional bulk aerogel materials via top⁃down wood nanotechnology for multibehavioral and reusable oil/water separation[J]. Chemical Enginee⁃ring Journal, 2019, 371: 769⁃780. |
38 | ZHU Z , FU S , LUCIA L A . A fiber⁃aligned thermal⁃managed wood⁃based superhydrophobic aerogel for efficient oil recovery[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16 428⁃16 439. |
39 | LEE S Y , RAHMAWAN Y , YANG S . Transparent and superamphiphobic surfaces from mushroom⁃like micropillar arrays[J]. ACS applied materials & interfaces, 2015, 7(43): 24 197⁃24 203. |
40 | WANG Y , TANG Z , LU S , et al . Superhydrophobic wood grafted by poly (2⁃(perfluorooctyl) ethyl methacrylate) via ATRP with self⁃cleaning, abrasion resistance and anti⁃mold properties[J]. Holzforschung, 2020, 74(8): 799⁃809. |
41 | DENG B , CAI R , YU Y , et al . Laundering durability of superhydrophobic cotton fabric[J]. Advanced Materials, 2010, 22(48): 5 473⁃5 477. |
42 | 巫龙辉,卢生昌,林新兴,等 .纤维素基超疏水材料的研究进展[J].林产化学与工业,2016,36(6):119⁃126. |
WU L H , LU S C , LIN X X , et al . Research progress in superhydrophobic cellulose⁃based materials[J]. Chemistry and Industry of Forest Products, 2016, 36(6): 119⁃126. | |
43 | SÈBE G , BROOK M A . Hydrophobization of wood surfaces: covalent grafting of silicone polymers[J]. Wood Science and Technology, 2001, 35(3): 269⁃282. |
44 | LIN W , HUANG Y , LI J , et al . Preparation of highly hydrophobic and anti⁃fouling wood using poly (methylhydrogen) siloxane[J]. Cellulose, 2018, 25(12): 7 341⁃7 353. |
45 | GAO J , LIN W , LIN S , et al . Environment⁃friendly and two⁃component method for fabrication of highly hydrophobic wood using poly (methylhydrogen) siloxane[J]. Polymers, 2021, 13(1): 124. |
46 | PRATIWI N , ARIEF S , WELLIA D V . Self⁃cleaning material based on superhydrophobic coatings through an environmentally friendly sol⁃gel method[J]. Journal of Sol⁃Gel Science and Technology, 2020, 96(3): 669⁃678. |
47 | 田根林,马欣欣,吕黄飞,等 .溶胶凝胶法制备超疏水竹材[J].东北林业大学学报,2015,43(2):84⁃86,97. |
TIAN G L , MA X X , LV H F , et al . Super⁃hydrophobic preparation for bamboo by sol⁃gel progress[J]. Journal of Northeast Forestry University, 2015, 43(2):84⁃86,97. | |
48 | LIU F , WANG S , ZHANG M , et al . Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer[J]. Applied Surface Science, 2013, 280: 686⁃692. |
49 | TU K , WANG X , KONG L , et al . Fabrication of robust, damage⁃tolerant superhydrophobic coatings on naturally micro⁃grooved wood surfaces[J]. RSC Advances, 2016, 6(1): 701⁃707. |
50 | YANG Y , SHAN L , SHEN H , et al . Manufacturing of robust superhydrophobic wood surfaces based on PEG⁃functionalized SiO2/PVA/PAA/fluoropolymer hybrid transparent coating[J]. Progress in Organic Coatings, 2021, 154: 106186. |
51 | WANG H , ZHOU H , GESTOS A , et al . Robust, electro⁃conductive, self⁃healing superamphiphobic fabric prepared by one⁃step vapour⁃phase polymerisation of poly (3, 4⁃ethylenedioxythiophene) in the presence of fluorinated decyl polyhedral oligomeric silsesquioxane and fluorinated alkyl silane[J]. Soft Matter, 2013, 9(1): 277⁃282. |
52 | HUANG J , LYU S , FU F , et al . Green preparation of a cellulose nanocrystals/polyvinyl alcohol composite superhydrophobic coating[J]. RSC Advances, 2017, 7(33): 20 152⁃20 159. |
53 | YANG R , LIANG Y , HONG S , et al . Novel low⁃temperature chemical vapor deposition of hydrothermal delignified wood for hydrophobic property[J]. Polymers, 2020, 12(8): 1757. |
54 | 刘明,吴义强,卿彦,等 .木材仿生超疏水功能化修饰研究进展[J].功能材料,2015,46(14):14 012⁃14 018. |
LIU M , WU Y Q , QING Y , et al . Progress in the research of functional modification on bionic fabrication of superhydrophobic wood[J]. Journal of Functional Mate⁃rials, 2015, 46(14): 14 012⁃14 018. | |
55 | NIE K , XU L , QIAN T , et al . Fabrication of a robust and flame⁃retardant alooh⁃lignocellulose composite with a lotus⁃leaf⁃like superhydrophobic coating[J]. Journal of Wood Chemistry and Technology, 2020, 40(1): 44⁃57. |
56 | WANG F , LI S , WANG L . Fabrication of artificial super⁃hydrophobic lotus⁃leaf⁃like bamboo surfaces through soft lithography[J]. Colloids and Surfaces A: physicochemical and engineering aspects, 2017, 513: 389⁃395. |
57 | DAHLE S , MEUTHEN J , GUSTUS R , et al . Superhydrophilic coating of pine wood by plasma functionalization of self⁃assembled polystyrene spheres[J]. Coatings, 2021, 11(2): 114. |
58 | JANESCH J , ARMINGER B , GINDL⁃ALTMUTTER W , et al . Superhydrophobic coatings on wood made of plant oil and natural wax[J]. Progress in Organic Coa⁃tings, 2020, 148: 105891. |
59 | LIN L , CAO J , ZHANG J , et al . Enhanced anti⁃mold property and mechanism description of Ag/TiO2 wood⁃based nanocomposites formation by ultrasound⁃and vacuum⁃impregnation[J]. Nanomaterials, 2020, 10(4): 682. |
60 | ARMINGER B , GINDL⁃ALTMUTTER W , KECKES J , et al . Facile preparation of superhydrophobic wood surfaces via spraying of aqueous alkyl ketene dimer dispersions[J]. RSC Advances, 2019, 9(42): 24 357⁃24 367. |
61 | OU J , ZHAO G , WANG F , et al . Durable superhydrophobic wood via one⁃step immersion in composite silane solution[J]. ACS Omega, 2021, 6(11): 7 266⁃7 274. |
62 | ZHAO F , TANG T , HOU S , et al . Preparation and synergistic effect of chitosan/sodium Phytate/MgO nanoparticle fire⁃retardant coatings on wood substrate through layer⁃by⁃layer self⁃assembly[J]. Coatings, 2020, 10(9): 848. |
63 | WAN Y , HOU S , GUO M , et al . Surface properties of spray⁃assisted layer⁃by⁃layer electrostatic self⁃assembly treated wooden take⁃off board[J]. Applied Sciences, 2021, 11(2): 836. |
64 | GU H , ZHANG Q , GU J , et al . Facile preparation of superhydrophobic silica nanoparticles by hydrothermal⁃assis⁃ted sol⁃gel process and effects of hydrothermal time on surface modification[J]. Journal of Sol⁃Gel Science and Technology, 2018, 87(2): 478⁃485. |
65 | XING D , ZHANG Y , HU J , et al . Highly hydrophobic and self⁃cleaning heat⁃treated larix spp. Prepared by TiO2 and ZnO particles onto wood surface[J]. Coatings, 2020, 10(10): 986. |
66 | XIA M , YANG T , CHEN S , et al . Fabrication of superhydrophobic eucalyptus wood surface with self⁃cleaning performance in air and oil environment and high durability[J]. Colloid and Interface Science Communications, 2020, 36: 100264. |
67 | YANG H , WANG S , WANG X , et al . Wood⁃based composite phase change materials with self⁃cleaning superhydrophobic surface for thermal energy storage[J]. Applied Energy, 2020, 261: 114481. |
68 | WANG J , LU Y , CHU Q , et al . Facile construction of superhydrophobic surfaces by coating fluoroalkylsilane/silica composite on a modified hierarchical structure of wood[J]. Polymers, 2020, 12(4): 1⁃12. |
69 | TU K , WANG X , KONG L , et al . Facile preparation of mechanically durable, self⁃healing and multifunctional superhydrophobic surfaces on solid wood[J]. Materials & Design, 2018, 140: 30⁃36. |
70 | WANG N , WANG Q , XU S , et al . Robust superhydrophobic wood surfaces with mechanical durability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608: 125624. |
71 | ZHAO M , TAO Y , WANG J , et al . Facile preparation of superhydrophobic porous wood for continuous oil⁃water separation[J]. Journal of Water Process Engineering, 2020, 36: 101279. |
72 | GUAN H , CHENG Z , WANG X . Highly compressible wood sponges with a spring⁃like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano, 2018, 12(10): 10 365⁃10 373. |
73 | AL⁃QAHTANI S , ALJUHANI E , FELALY R , et al . Development of photoluminescent translucent wood toward photochromic smart window applications[J]. Industrial & Engineering Chemistry Research, 2021, 60(23): 8 340⁃8 350. |
74 | HSIEH C T , CHANG B S , LIN J Y . Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating[J]. Applied surface science, 2011, 257(18): 7 997⁃8 002. |
75 | LI J , LU Y , WU Z , et al . Durable, self⁃cleaning and superhydrophobic bamboo timber surfaces based on TiO2 films combined with fluoroalkylsilane[J]. Ceramics International, 2016, 42(8): 9 621⁃9 629. |
76 | YANG Y , SHEN H , QIU J . Fabrication of biomimetic robust self⁃cleaning superhydrophobic wood with canna⁃leaf⁃like micro/nanostructure through morph⁃genetic me⁃thod improved water⁃, UV⁃, and corrosion resistance properties[J]. Journal of Molecular Structure, 2020, 1219: 128616. |
77 | 王小青,孟军旺,程志泳,等 .木材耐久性超疏水表面构建研究进展[J].林业工程学报,2020,5(3):13⁃20. |
WANG X Q , MENG J W , CHENG Z Y , et al . Research progress of durable superhydrophobic wood surface[J]. China Forestry Science and Technology, 2020, 5(3): 13⁃20. | |
78 | ZHANG X , SI Y , MO J , et al . Robust micro⁃nanoscale flowerlike ZnO/epoxy resin superhydrophobic coating with rapid healing ability[J]. Chemical Engineering Journal, 2017, 313: 1 152⁃1 159. |
79 | JIA S , LU Y , LUO S , et al . Thermally⁃induced all⁃damage⁃healable superhydrophobic surface with photocatalytic performance from hierarchical BiOCl[J]. Chemical Engineering Journal, 2019, 366: 439⁃448. |
80 | JIN C , LI J , HAN S , et al . A durable, superhydrophobic, superoleophobic and corrosion⁃resistant coating with rose⁃like ZnO nanoflowers on a bamboo surface[J]. App⁃lied surface science, 2014, 320: 322⁃327. |
81 | LI J , SUN Q , YAO Q , et al . Fabrication of robust superhydrophobic bamboo based on ZnO nanosheet networks with improved water⁃, UV⁃, and fire⁃resistant properties[J]. Journal of Nanomaterials, 2015, 9: 1⁃9. |
82 | MA T , LI L , MEI C , et al . Construction of sustainable, fireproof and superhydrophobic wood template for efficient oil/water separation[J]. Journal of Materials Science, 2021, 56(9): 5 624⁃5 636. |
[1] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[2] | 陈轲, 刘鸣飞, 赵彪, 潘凯. 有机硅改性高分子材料阻燃及耐烧蚀性能研究进展[J]. 中国塑料, 2022, 36(6): 149-154. |
[3] | 邓天翔, 许利娜, 李守海, 张燕, 姚娜, 贾普友, 丁海阳, 李梅. PVC接枝改性及交联改性方法研究进展[J]. 中国塑料, 2022, 36(5): 140-148. |
[4] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
[5] | 赵新新, 金晓冬, 施妍, 孙诗兵, 吕锋, 田英良, 赵志永. 基于紫外⁃臭氧辐照的挤塑聚苯乙烯表面改性研究[J]. 中国塑料, 2022, 36(5): 8-13. |
[6] | 陈文静, 杨小龙, 韩顺涛, 韩颖, 马秀清. 聚丙烯腈材料改性方法及研究进展[J]. 中国塑料, 2022, 36(4): 158-165. |
[7] | 董露茜, 徐芳, 翁云宣. 聚乙醇酸改性及其应用研究进展[J]. 中国塑料, 2022, 36(4): 166-174. |
[8] | 李素圆, 刘会鹏, 龚舜, 黄国桃, 李玉才, 吴鑫, 邓建平, 潘凯. 热塑性聚酰胺弹性体改性EVA复合发泡材料的制备及性能表征[J]. 中国塑料, 2022, 36(4): 6-14. |
[9] | 黎玉山, 李杰. PDMS耐久性超疏水表面的研究进展[J]. 中国塑料, 2022, 36(3): 167-176. |
[10] | 马嘉森, 薛永兵, 郭旗, 刘振民. 废旧塑料改性剂改性沥青的研究进展[J]. 中国塑料, 2022, 36(2): 131-138. |
[11] | 李永青, 杨小龙, 陈文静, 闫晓堃, 马秀清. 改性剂及高密度聚乙烯插层和剥离蒙脱石的分子动力学模拟[J]. 中国塑料, 2022, 36(2): 67-74. |
[12] | 金福锦, 郝雨楠, 焦红文, 赵宏宇. 建筑绝热用石墨改性挤塑聚苯乙烯泡沫板的应用及标准解读[J]. 中国塑料, 2021, 35(9): 109-115. |
[13] | 孙国华, 张信, 武德珍, 侯连龙. 高性能聚酰亚胺复合材料的研究进展[J]. 中国塑料, 2021, 35(9): 147-155. |
[14] | 陆伟鑫, 陆冲, 王斌, 胡晶, 吴菁菁, 周秦鹏. 环氧改性剂对PA6/EVOH共混物性能的影响[J]. 中国塑料, 2021, 35(9): 8-14. |
[15] | 黎帅, 龙春光, 闵建新, 周卓. 基于改性PET的极限PV值测试及摩擦学性能比较研究[J]. 中国塑料, 2021, 35(9): 87-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||