
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2020, Vol. 34 ›› Issue (6): 27-33.DOI: 10.19491/j.issn.1001-9278.2020.06.005
翟微, 孙健健, 王博华, 滕冲, 谢时宇, 郝凤昊, 靳玉娟()
收稿日期:
2019-12-02
出版日期:
2020-06-26
发布日期:
2020-06-26
基金资助:
Wei ZHAI, Jianjian SUN, Bohua WANG, Chong TENG, Shiyu XIE, Fenghao HAO, Yujuan JIN()
Received:
2019-12-02
Online:
2020-06-26
Published:
2020-06-26
Contact:
Yujuan JIN
E-mail:jinyujuan@th.btbu.edu.cn
摘要:
以乙二胺和三聚氯氰作为原料,以丙酮为溶剂,通过“一步法”合成了胺端基型的超支化乙二胺三嗪聚合物(HBETP)。以HBETP作为改性剂,采用双螺杆挤出机熔融共混和注射成型法制备了聚乳酸(PLA)/聚碳酸亚丙酯(PPC)共混物,并用差示扫描量热仪(DSC)、 热失重分析仪(TGA)、电子万能试验机、扫描电字显微镜(SEM)等测试手段对共混物的热性能、力学性能以及断面形貌等进行表征与测试。结果表明,与PLA/PPC共混物相比,当HBETP含量为0.6份时,PLA/PPC/HBETP共混体系在保持拉伸强度基本不变的基础上,断裂伸长率和冲击强度分别提高了266.0 %和122.9 %;HBETP是一种增韧PLA/PPC共混物的有效助剂。
中图分类号:
翟微, 孙健健, 王博华, 滕冲, 谢时宇, 郝凤昊, 靳玉娟. 胺端基型超支化乙二胺三嗪聚合物对PLA/PPC的增韧改性研究[J]. 中国塑料, 2020, 34(6): 27-33.
Wei ZHAI, Jianjian SUN, Bohua WANG, Chong TENG, Shiyu XIE, Fenghao HAO, Yujuan JIN. Study on Toughening Modification of PLA/PPC Blends with Hyperbranched Ethylenediamine Trazine Polymer[J]. China Plastics, 2020, 34(6): 27-33.
样品编号 | PLA含量/g | PPC含量/g | HBETP含量/g |
---|---|---|---|
1# | 350 | 150 | 0 |
2# | 350 | 150 | 0.5 |
3# | 350 | 150 | 1.0 |
4# | 350 | 150 | 2.0 |
5# | 350 | 150 | 3.0 |
6# | 350 | 150 | 4.0 |
样品编号 | PLA含量/g | PPC含量/g | HBETP含量/g |
---|---|---|---|
1# | 350 | 150 | 0 |
2# | 350 | 150 | 0.5 |
3# | 350 | 150 | 1.0 |
4# | 350 | 150 | 2.0 |
5# | 350 | 150 | 3.0 |
6# | 350 | 150 | 4.0 |
样品编号 | Tg1/℃ | Tg2/℃ | ΔTg/℃ |
---|---|---|---|
1# | 52.97 | 30.97 | 22.00 |
2# | 55.21 | 33.89 | 21.32 |
3# | 54.36 | 33.96 | 20.40 |
4# | 54.36 | 33.42 | 20.94 |
5# | 54.13 | 33.71 | 20.42 |
6# | 54.53 | 33.92 | 20.61 |
样品编号 | Tg1/℃ | Tg2/℃ | ΔTg/℃ |
---|---|---|---|
1# | 52.97 | 30.97 | 22.00 |
2# | 55.21 | 33.89 | 21.32 |
3# | 54.36 | 33.96 | 20.40 |
4# | 54.36 | 33.42 | 20.94 |
5# | 54.13 | 33.71 | 20.42 |
6# | 54.53 | 33.92 | 20.61 |
样品编号 | T5%/℃ | T50%/℃ | T95%/℃ | 500 ℃残炭率/% |
---|---|---|---|---|
1# | 301.87 | 343.52 | 374.46 | 2.033 |
2# | 302.58 | 344.71 | 373.02 | 2.059 |
3# | 300.91 | 344.33 | 372.36 | 1.829 |
4# | 302.93 | 347.25 | 421.61 | 2.821 |
5# | 303.13 | 346.61 | 376.07 | 2.096 |
6# | 303.91 | 352.71 | 376.24 | 2.344 |
样品编号 | T5%/℃ | T50%/℃ | T95%/℃ | 500 ℃残炭率/% |
---|---|---|---|---|
1# | 301.87 | 343.52 | 374.46 | 2.033 |
2# | 302.58 | 344.71 | 373.02 | 2.059 |
3# | 300.91 | 344.33 | 372.36 | 1.829 |
4# | 302.93 | 347.25 | 421.61 | 2.821 |
5# | 303.13 | 346.61 | 376.07 | 2.096 |
6# | 303.91 | 352.71 | 376.24 | 2.344 |
1 | TALBAMRUNG T, KASEMSOOK C, SANGTEAN W, et al. Effect of Peroxide and Organoclay on Thermal and Mechanical Properties of PLA in PLA/NBR Melted Blend [J]. Energy Procedia, 2016, 89: 274⁃281. |
2 | LI X, QI C, HAN L, et al. Influence of Dynamic Compressive Loading on the in Vitro, Degradation Behavior of Pure PLA and Mg/PLA Composite[J]. Acta Biomaterialia, 2017, 64: 269⁃278. |
3 | ZHAO H, CUI Z, WANG X, et al. Processing and Characterization of Solid and Microcellular Poly(lactic acid)/Polyhydroxybutyrate⁃valerate (PLA/PHBV) Blends and PLA/PHBV/Clay Nanocomposites[J]. Composites Part B:Engineering, 2013, 51(51): 79⁃91. |
4 | LORENZO M L D, OVYN R, MALINCONICO M, et al. Peculiar Crystallization Kinetics of Biodegradable Poly(lactic acid)/Poly(propylene carbonate) Blends[J]. Polymer Engineering & Science, 2016, 55(12): 2 698⁃2 705. |
5 | WANG G L, ZHANG D M, LI B, et al. Strong and Thermal⁃resistance Glass Fiber⁃reinforced Polylactic Acid (PLA) Composites Enabled by Heat Treatment[J]. International Journal of Biological Macromolecules, 2019, 129: 448⁃459. |
6 | LI MZ, HU X Y, HE M, YU J, LU S Jet al. Structure and Properties of Epoxy Modified PLA/Low Melting Point PA6 Composites[J]. Chinese Journal of Materials Research, 2019, 33(4):261⁃270. |
7 | CHEN W, CHEN H, YUAN Y, et al. Synergistic Effects of Polyethylene Glycol and Organic Montmorillonite on The Plasticization and Enhancement of Poly(lactic acid)[J]. Journal of Applied Polymer Science, 2019,136(21): 47576. |
8 | GARCIA⁃CAMPO M J, QUILES⁃CARRILLO L, SANCHEZ⁃NACHER L, et al. High Toughness Poly(lactic acid) (PLA) Formulations Obtained by Ternary Blends with Poly(3⁃hydroxybutyrate) (PHB) and Flexible Polyesters From Succinic Acid[J]. Polymer Bulletin, 2019, 76(4): 1 839⁃1 859. |
9 | HOU A L, QU J P. Super⁃Toughened Poly(lactic Acid) with Poly(epsilon⁃caprolactone) and Ethylene⁃Methyl Acrylate⁃Glycidyl Methacrylate by Reactive Melt Blending[J]. Polymers, 2019,11(5): 771. |
10 | WANG Y, MEI Y, WANG Q, et al. Improved Fracture Toughness and Ductility of PLA Composites by Incorporating a Small Amount of Surface⁃modified Helical Carbon Nanotubes[J]. Composites Part B:Engineering, 2019, 162:54⁃61. |
11 | KILIC N T, CAN B N, KODAL M, et al. Compatibilization of PLA/PBAT Blends by Using Epoxy‐POSS[J]. Journal of Applied Polymer Science, 2019, 136(12): 47217. |
12 | CARBONELL⁃VERDU A, FERRI JM, DOMINICI F, et al. Manufacturing and Compatibilization of PLA/PBAT Binary Blends by Cottonseed Oil⁃based Derivatives[J]. Express Polymer Letters, 2018, 12(9):808⁃823. |
13 | PHETPHAISIT C W, WAPANYAKUL W, PHINYOCHEEP P. Effect of Modified Rubber Powder on the Morphology and Thermal and Mechanical Properties of Blown Poly(lactic acid)⁃hydroxyl Epoxidized Natural Rubber Films for Flexible Film Packaging[J]. Journal of Applied Polymer Science, 2019, 136(21): 47503. |
14 | AHMED M F, LI Y, YAO Z, et al. TPU/PLA Blend Foams: Enhanced Foamability, Structural Stability, and Implications for Shape Memory Foams[J]. Journal of Applied Polymer Science, 2019, 136(17): 47416. |
15 | AGUERO A, QUILES⁃CARRILLO L, JORDA⁃VILAPLANA A, et al. Effect of Different Compatibilizers on Environmentally Friendly Composites From Poly(lactic acid) and Diatomaceous Earth[J]. Polymer International, 2019, 68(5):893⁃903. |
16 | YANG Z Z, BI H J, BI Y B, et al. Comparison Between Polyethylene Glycol and Tributyl Citrate to Modify the Properties of Wood Fiber/Polylactic Acid Biocomposites[J]. Polymer Composites, 2019, 40(4):1 384⁃1 394. |
17 | WENG F Q, WANG M, KORANTENG E, et al. Effects of PBA⁃Based Polyurethane Prepolymer as Compatibilizer on the Properties of Polylactic Acid⁃Starch Composites[J]. Starch⁃Starke, 2019, 71(3⁃4):1800205. |
18 | SHOJAEIARANI J, BAJWA D S, HARTMAN K. Esterified Cellulose Nanocrystals as Reinforcement in Poly(lactic acid) Nanocomposites[J]. Cellulose, 2019, 26(4):2 349⁃2 362. |
19 | INHMHANEEF, BUYS Y F, SHAFFIAR N M, et al. Miscibility, Mechanical and Thermal Properties of Polylactic Acid/Polypropylene Carbonate (PLA/PPC) Blends Prepared by Melt⁃mixing Method[J]. Materials Today⁃Proceedings, 2019, 17(3):534⁃542. |
20 | ZHOU Y, WANG J, CAI S Y, et al. Effect of POE⁃g⁃GMA on Mechanical, Rheological and Thermal Properties of Poly(lactic acid)/Poly(propylene carbonate) Blends[J]. Polymer Bulletin, 2018, 75(12): 5 437⁃5 454. |
21 | GAO J, BAI H, ZHANG Q, et al. Effect of Homopolymer Poly(vinyl acetate) on Compatibility and Mechanical Properties of Poly(propylene carbonate)/Poly(lactic acid) Blends. Express Polym Lett, 2012(6): 860⁃870. |
22 | DENG Y, SAUCIERSAWYER J, HOIMES C, et al. The Effect of Hyperbranched Polyglycerol Coatings on Drug Delivery Using Degradable Polymer Nanoparticles[J]. Biomaterials, 2014, 35(24):6 595⁃6 602. |
23 | TOMUTA A, FERRANDO F, ÀSERRA, et al. New Aromatic⁃Aliphatic Hyperbranched Polyesters with Vinylic End Groups of Different Length as Modifiers of Epoxy/Anhydride Thermosets[J]. Reactive & Functional Polymers, 2012, 72(9):556⁃563. |
24 | RUN M T, WANG J, YAO M, et al. Influences of Hyperbranched Poly(amide⁃ester) on The Properties of Poly(butylene succinate)[J]. Materials Chemistry & Physics, 2013, 139(2/3):988⁃997. |
25 | TANG B, LIU X B, ZHAO X L, et al. Highly Efficient in Situ Toughening of Epoxy Thermosets with Reactive Hyperbranched Polyurethane[J]. Journal of Applied Polymer Science, 2014, 131(16):1 107⁃1 117. |
26 | CHEN S F, ZHANG D H, JIANG S B, et al. Preparation of Hyperbranched Epoxy Resin Containing Nitrogen Heterocycle and Its Toughened and Reinforced Compo⁃sites[J]. Journal of Applied Polymer Science, 2012, 123(6):3 261⁃3 269. |
27 | LUO L J, MENG Y, QIU T, et al. An Epoxy—Ended Hyperbranched Polymer as a New Modifier for Toughe⁃ning and Reinforcing in Epoxy Resin[J]. Journal of Applied Polymer Science, 2013, 130(2):1 064⁃1 073. |
28 | JIANG S Z, YAO Y F, CHEN Q, et al. NMR Study of Thermoresponsive Hyperbranched Polymer in Aqueous Solution with Implication on the Phase Transition[J]. Macromolecules, 2013, 46(24):9 688⁃9 697. |
29 | FOTIADOU S, KARAGEORGAKI C, CHRISSOPOULOU K, et al. Structure and Dynamics of Hyperbranched Polymer/Layered Silicate Nanocomposites[J]. Macromolecules, 2013, 46(7):2 842⁃2 855. |
30 | BHARDWAJ R, MOHANTY AK. Modification of Brittle Polylactide by Novel Hyperbranched Polymer⁃based Nanostructures.[J]. Biomacromolecules, 2007, 8(8):2 476⁃2 484. |
31 | HUBER T, POTSCHKE P, POMPE G, et al. Blends of Hyperbranched Poly(ether amide)s and Polyamide⁃6[J]. Macromolecular Materials and Engineering, 2000, 280(281): 33⁃40. |
32 | JIN Y J, MEN S, WENG Y X. An Investigation of the Impact of an Amino⁃Ended Hyperbranched Polymer as a New Type of Modifier on the Compatibility of PLA/PBAT Blends[J]. Journal of Polymer Engineering, 2018, 38 (3): 223⁃229. |
33 | JIN Y J, WANG E E, WENG Y X, et al. The Investigation of the Toughening Mechanism of PHBV/PBAT with a Novel Hyperbranched Ethylenediamine Triazine Polymer Based Modifier: The Formation of the Transition Layer and the Microcrosslinking Structure[J].Journal of Polymers and the Environment, 2018, 26: 4 158⁃4 167. |
34 | JIN Y J, GAO P X, QIAN L Jet al. Synthesis of Hyperbranched Aromatic Amine Triazine Polymer and Its Flame Retardation Performance on Polypropylen[J]. China Plastics, 2013, 27(5): 77⁃81. |
35 | XU M L, CHEN Y J, QIAN L J, et al. Component Ratio Effects of Hyperbranched Triazine Compound and Ammonium Polyphosphate in Flame⁃Retardant Polypropylene Composites[J]. Journal of Applied Polymer Science, 2014, 131(21): 41 006. |
[1] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[2] | 沈雪梅, 朱小龙, 胡燕超, 宋任远, 张现峰, 李席. 静电喷雾法制备聚乳酸/布洛芬微球及其性能研究[J]. 中国塑料, 2022, 36(7): 61-67. |
[3] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[4] | 陈轲, 刘鸣飞, 赵彪, 潘凯. 有机硅改性高分子材料阻燃及耐烧蚀性能研究进展[J]. 中国塑料, 2022, 36(6): 149-154. |
[5] | 邵琳颖, 郗悦玮, 翁云宣. 可降解聚乳酸复合材料研究进展[J]. 中国塑料, 2022, 36(6): 155-164. |
[6] | 邓天翔, 许利娜, 李守海, 张燕, 姚娜, 贾普友, 丁海阳, 李梅. PVC接枝改性及交联改性方法研究进展[J]. 中国塑料, 2022, 36(5): 140-148. |
[7] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
[8] | 赵新新, 金晓冬, 施妍, 孙诗兵, 吕锋, 田英良, 赵志永. 基于紫外⁃臭氧辐照的挤塑聚苯乙烯表面改性研究[J]. 中国塑料, 2022, 36(5): 8-13. |
[9] | 李梦琪, 陈雅君. 纳米材料阻燃聚乳酸的研究进展[J]. 中国塑料, 2022, 36(4): 102-114. |
[10] | 陈文静, 杨小龙, 韩顺涛, 韩颖, 马秀清. 聚丙烯腈材料改性方法及研究进展[J]. 中国塑料, 2022, 36(4): 158-165. |
[11] | 董露茜, 徐芳, 翁云宣. 聚乙醇酸改性及其应用研究进展[J]. 中国塑料, 2022, 36(4): 166-174. |
[12] | 李素圆, 刘会鹏, 龚舜, 黄国桃, 李玉才, 吴鑫, 邓建平, 潘凯. 热塑性聚酰胺弹性体改性EVA复合发泡材料的制备及性能表征[J]. 中国塑料, 2022, 36(4): 6-14. |
[13] | 马嘉森, 薛永兵, 郭旗, 刘振民. 废旧塑料改性剂改性沥青的研究进展[J]. 中国塑料, 2022, 36(2): 131-138. |
[14] | 仇洪波. 基于仿生学的木材超疏水表面改性研究进展[J]. 中国塑料, 2022, 36(2): 182-196. |
[15] | 孙滔, 杨青, 胡健, 王洋样, 刘博, 云雪艳, 董同力嘎. 聚(乳酸⁃乙醇酸)薄膜制备及其性能研究[J]. 中国塑料, 2022, 36(2): 33-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||