
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (1): 14-20.DOI: 10.19491/j.issn.1001-9278.2024.01.003
收稿日期:
2023-07-23
出版日期:
2024-01-26
发布日期:
2024-01-22
通讯作者:
陈海英(1984-),女,硕士导师,研究方向为食品加工与过程装备技术,chenhaiying@jiangnan.edu.cn作者简介:
陈程(1999-),女,硕士研究生,研究方向为食品加工与过程装备技术,ccshiwo1999@163.com
基金资助:
CHEN Cheng(), ZHANG Hao, YANG Mengyao, CHEN Haiying(
), SUN Hao, WEI Lingjun
Received:
2023-07-23
Online:
2024-01-26
Published:
2024-01-22
Contact:
CHEN Haiying
E-mail:ccshiwo1999@163.com;chenhaiying@jiangnan.edu.cn
摘要:
聚醋酸乙烯酯(PVAc)作为非共价键型增容剂加入到聚羟基丁酸酯(PHB)/聚己内酯(PCL)(25∶75,质量分数,下同)二元共混体系中,通过溶液浇铸法制备薄膜,探究不同含量的PVAc(1 %、3 %、5 %)对PHB/PCL共混物体系的力学性能和理化性能的影响。结果表明,PVAc含量为1 %时,薄膜的断裂伸长率和拉伸强度分别为未添加PVAc的PHB/PCL薄膜的2.50倍、1.19倍。傅里叶变换红外光谱(ATR⁃FTIR)显示,在PVAc的桥联作用下,PHB和PCL的羰基(C=O)基团和甲基(CH3)基团之间存在分子间氢键的相互作用,羰基峰(C=O)发生移位,并且峰值降低。扫描电子显微镜(SEM)显示,PVAc的加入降低了共混体系中分散相的尺寸,分布更为均匀,共混体系的相容性有所改善。
中图分类号:
陈程, 张豪, 杨梦瑶, 陈海英, 孙昊, 卫灵君. 聚醋酸乙烯酯(PVAc)对PHB/PCL共混物理化性能研究[J]. 中国塑料, 2024, 38(1): 14-20.
CHEN Cheng, ZHANG Hao, YANG Mengyao, CHEN Haiying, SUN Hao, WEI Lingjun. Effect of poly(vinyl acetate) (PVAc) on physicochemical properties of PHB/PCL blends[J]. China Plastics, 2024, 38(1): 14-20.
晶面 | PHB25/PCL75 | PHB25/PCL75/PVAc1 | PHB25/PCL75/PVAc3 | PHB25/PCL75/PVAc5 | ||||
---|---|---|---|---|---|---|---|---|
2θ/(°) | d/nm | 2θ/(°) | d/nm | 2θ/(°) | d/nm | 2θ/(°) | d/nm | |
Xc/% | 41.99 | 29.52 | 35.29 | 36.65 | ||||
020 | 14.30 | 0.619 4 | 13.54 | 0.654 0 | 13.94 | 0.635 3 | 13.83 | 0.640 3 |
110 | 17.78 | 0.4989 | 16.98 | 0.522 2 | 17.38 | 0.510 2 | 17.28 | 0.513 2 |
101 | 22.18 | 0.400 8 | 21.42 | 0.414 8 | 21.83 | 0.407 1 | 21.72 | 0.409 2 |
111 | 22.68 | 0.3921 | 22.18 | 0.400 8 | 22.38 | 0.397 3 | 22.28 | 0.399 0 |
130 | 24.35 | 0.3655 | 23.75 | 0.374 6 | 24.10 | 0.369 3 | 24.00 | 0.370 8 |
140 | 26.27 | 0.3392 | 25.51 | 0.349 2 | 25.81 | 0.345 2 | 25.92 | 0.343 7 |
晶面 | PHB25/PCL75 | PHB25/PCL75/PVAc1 | PHB25/PCL75/PVAc3 | PHB25/PCL75/PVAc5 | ||||
---|---|---|---|---|---|---|---|---|
2θ/(°) | d/nm | 2θ/(°) | d/nm | 2θ/(°) | d/nm | 2θ/(°) | d/nm | |
Xc/% | 41.99 | 29.52 | 35.29 | 36.65 | ||||
020 | 14.30 | 0.619 4 | 13.54 | 0.654 0 | 13.94 | 0.635 3 | 13.83 | 0.640 3 |
110 | 17.78 | 0.4989 | 16.98 | 0.522 2 | 17.38 | 0.510 2 | 17.28 | 0.513 2 |
101 | 22.18 | 0.400 8 | 21.42 | 0.414 8 | 21.83 | 0.407 1 | 21.72 | 0.409 2 |
111 | 22.68 | 0.3921 | 22.18 | 0.400 8 | 22.38 | 0.397 3 | 22.28 | 0.399 0 |
130 | 24.35 | 0.3655 | 23.75 | 0.374 6 | 24.10 | 0.369 3 | 24.00 | 0.370 8 |
140 | 26.27 | 0.3392 | 25.51 | 0.349 2 | 25.81 | 0.345 2 | 25.92 | 0.343 7 |
PVAc含量/ % | 降温曲线 | 第二次升温曲线 | 结晶度(Xc)/% | |||||
---|---|---|---|---|---|---|---|---|
PCL的结晶温度 (Tc1)/℃ | PCL的结晶焓 (Hc1)/J·g-1 | PCL的熔融温度(Tm1)/℃ | PCL的熔融焓 (Hm1)/J·g-1 | PHB的熔融温度 (Tm2)/℃ | PHB的熔融焓 (Hm2)/J·g-1 | PCL | PHB | |
0 | 21.75 | 40.62 | 52.99 | 35.85 | 169.53 | 15.38 | 34.27 | 42.14 |
1 | 23.61 | 42.80 | 54.48 | 42.96 | 172.42 | 7.67 | 41.88 | 21.44 |
3 | 22.02 | 40.52 | 54.76 | 31.01 | 171.57 | 14.11 | 31.42 | 40.98 |
5 | 23.00 | 36.78 | 52.92 | 27.14 | 169.35 | 12.26 | 28.27 | 36.61 |
PVAc含量/ % | 降温曲线 | 第二次升温曲线 | 结晶度(Xc)/% | |||||
---|---|---|---|---|---|---|---|---|
PCL的结晶温度 (Tc1)/℃ | PCL的结晶焓 (Hc1)/J·g-1 | PCL的熔融温度(Tm1)/℃ | PCL的熔融焓 (Hm1)/J·g-1 | PHB的熔融温度 (Tm2)/℃ | PHB的熔融焓 (Hm2)/J·g-1 | PCL | PHB | |
0 | 21.75 | 40.62 | 52.99 | 35.85 | 169.53 | 15.38 | 34.27 | 42.14 |
1 | 23.61 | 42.80 | 54.48 | 42.96 | 172.42 | 7.67 | 41.88 | 21.44 |
3 | 22.02 | 40.52 | 54.76 | 31.01 | 171.57 | 14.11 | 31.42 | 40.98 |
5 | 23.00 | 36.78 | 52.92 | 27.14 | 169.35 | 12.26 | 28.27 | 36.61 |
样品 | T-5 %/℃ | T-10 %/℃ | T-50 %/℃ | TmaxPHB/℃ | TmaxPCL/℃ | R400 ℃/% |
---|---|---|---|---|---|---|
PHB25/PCL75 | 267.17 | 281.17 | 384.88 | 290.5 | 402.83 | 33.33 |
PHB25/PCL75/PVAc1 | 276.17 | 283.67 | 398.50 | 289.0 | 410.33 | 47.96 |
PHB25/PCL75/PVAc3 | 283.17 | 291.17 | 401.00 | 296.0 | 411.83 | 50.00 |
PHB25/PCL75/PVAc5 | 288.5 | 295.33 | 396.33 | 300.67 | 411.67 | 45.30 |
样品 | T-5 %/℃ | T-10 %/℃ | T-50 %/℃ | TmaxPHB/℃ | TmaxPCL/℃ | R400 ℃/% |
---|---|---|---|---|---|---|
PHB25/PCL75 | 267.17 | 281.17 | 384.88 | 290.5 | 402.83 | 33.33 |
PHB25/PCL75/PVAc1 | 276.17 | 283.67 | 398.50 | 289.0 | 410.33 | 47.96 |
PHB25/PCL75/PVAc3 | 283.17 | 291.17 | 401.00 | 296.0 | 411.83 | 50.00 |
PHB25/PCL75/PVAc5 | 288.5 | 295.33 | 396.33 | 300.67 | 411.67 | 45.30 |
1 | Garcia⁃Garcia D, Quiles⁃Carrillo L, Balart R, et al. Innovative solutions and challenges to increase the use of poly(3⁃hydroxybutyrate) in food packagng and disposables [J]. European Polymer Journal, 2022, 178: 111505. |
2 | Jeremic S, Milovanovic J, Mojicevic M, et al. Understanding bioplastic materials ⁃ current state and trends [J]. Journal of the Serbian Chemical Society, 2020, 85(12): 1 507⁃1 538. |
3 | Kumar V, Sehgal R, Gupta R. Blends and composites of polyhydroxyalkanoates (PHAs) and their applications [J]. European Polymer Journal, 2021, 161: 110824. |
4 | Espinoza S M, Patil H I, San Martin Martinez E, et al. Poly⁃ε⁃caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: focus on nanomedicine in cancer [J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 69(2): 85⁃126. |
5 | Chen H, Oveissi F, Daly S, et al. A green and biodegradable plasticizer from copolymers of poly(β‐hydroxybutyrate‐co‐ε‐caprolactone) [J]. Journal of Applied Polymer Science, 2022, 139(22): 52 240. |
6 | Ding Y, Roether J A, Boccaccini A R, et al. Fabrication of electrospun poly (3⁃hydroxybutyrate)/poly (ε⁃caprolactone)/silica hybrid fibermats with and without calcium addition [J]. European Polymer Journal, 2014, 55: 222⁃234. |
7 | Chen J, Wang Y, Yin Z, et al. Morphology and mechanical properties of poly(beta⁃hydroxybutyrate)/poly(epsilon⁃caprolactone) blends controlled with cellulosic particles [J]. Carbohydr Polym, 2017, 174: 217⁃225. |
8 | 黄 伟.耐水性优良的聚醋酸乙烯酯乳液的合成研究[J].安徽科技,2021(8):51⁃53. |
HUANG W. Study on synthesis of polyvinyl acetate lotion with excellent water resistance[J]. Anhui Science & Technology,2021(8):51⁃53. | |
9 | Zhang Y, Wang L, Han C. Biodegradable poly(butylene adipate⁃co⁃terephthalate)/poly(vinyl acetate) blends with improved rheological and mechanical properties [J]. Journal of Polymer Research, 2022, 29(5): 1⁃15. |
10 | Xu H, Yu Y, Li Y. Crystallization, rheological and mechanical properties of poly(butylene succinate)/poly(propylene carbonate)/poly(vinyl acetate) ternary blends [J]. Colloid and Polymer Science, 2021, 299(9): 1 447⁃1 458. |
11 | El⁃Hadi A M. Effect of processing conditions on the development of morphological features of banded or nonbanded spherulites of poly(3⁃hydroxybutyrate) (PHB) and polylactic acid (PLLA) blends [J]. Polymer Engineering & Science, 2011, 51(11): 2 191⁃2 202. |
12 | Zhang S, Sun X, Ren Z, et al. The development of a bilayer structure of poly(propylene carbonate)/poly(3⁃hydroxybutyrate) blends from the demixed melt [J]. Phys Chem Chem Phys, 2015, 17(48): 32 225⁃32 231. |
13 | Naidu D S, John M J. Effect of clay nanofillers on the mechanical and water vapor permeability properties of xylan⁃Alginate films [J]. Polymers, 2020(10): E2279. |
14 | Li L, Zhang S, Xue M, et al. Band spacing in poly(3⁃hydroxybutyrate) and its blends with poly(propylene carbonate): dependence on thermal processing [J]. Langmuir, 2019, 35(34): 11 167⁃11 174. |
15 | Wei L, Mcdonald A G, Stark N M. Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide [J]. Biomacromolecules, 2015, 16(3): 1 040⁃1 049. |
16 | Techawinyutham L, Tengsuthiwat J, Srisuk R, et al. Recycled LDPE/PETG blends and HDPE/PETG blends: mechanical, thermal, and rheological properties [J]. Journal of Materials Research and Technology, 2021, 15: 2 445⁃2 458. |
17 | Przybysz M, Zedler Ł, Saeb M R, et al. Structure⁃property relationships in peroxide⁃assisted blends of poly(ε⁃caprolactone) and poly(3⁃hydroxybutyrate) [J]. Reactive and Functional Polymers, 2018, 127: 113⁃122. |
18 | Panaitescu D M, Nicolae C A, Frone A N, et al. Plasticized poly(3⁃hydroxybutyrate) with improved melt processing and balanced properties [J]. Journal of Applied Polymer Science, 2017, 134(19): 44810. |
19 | Wang X, Peng S, Dong L. Effect of poly(vinyl acetate) (PVAc) on thermal behavior and mechanical properties of poly(3⁃hydroxybutyrate)/poly(propylene carbonate) (PHB/PPC) blends [J]. Colloid and Polymer Science, 2005, 284(2): 167⁃174. |
20 | Sharhan O, Yahaya A H, Mohammed F A Q. Crystallization and thermal behaviour of poly(3⁃hydroxybutyric acid)/poly(vinyl acetate) blend Films [J]. Asian Journal of Chemistry, 2016, 28(3): 607⁃612. |
21 | 陈海英,张晨清,张 豪,等.聚(甲基)硅氧烷/聚羟基丁酸酯/聚己内酯复合膜的制备及性能表征[J].中国塑料, 2022, 36(12): 50⁃56. |
CHEN H Y, ZHANG C Q, ZHANG H, et al. Preparation and properties of poly(methyl) siloxane/ polyhydroxybutyrate / polycaprolactone composite film [J]. China Plastics, 2022, 36(12): 50⁃56. | |
22 | Abou⁃Aiad T H, El⁃Sabee M Z, Abd⁃El⁃Nour K N, et al. Miscibility and the specific interaction of polyhydroxybutyrate blended with polyvinylacetate and poly(vinyl acetate⁃co⁃vinyl alcohol) with some biological applications [J]. Journal of Applied Polymer Science, 2002, 86(9): 2 363⁃2 374. |
23 | Zhang J, Sato H, Tsuji H, et al. Differences in the CH3⋯OC interactions among poly(l⁃lactide), poly(l⁃lactide)/poly(d⁃lactide) stereocomplex, and poly(3⁃hydroxybutyrate) studied by infrared spectroscopy [J]. Journal of Molecular Structure, 2005, 735⁃736: 249⁃257. |
24 | Gao J, Bai H, Zhang Q, et al. Effect of homopolymer poly(vinyl acetate) on compatibility and mechanical properties of poly(propylene carbonate)/poly(lactic acid) blends [J]. Express Polymer Letters, 2012, 6(11): 860⁃870. |
25 | Vergara⁃Porras B, Gracida⁃Rodríguez J N, Pérez⁃Guevara F. Thermal processing influence on mechanical, thermal, and biodegradation behavior in poly(β⁃hydroxybutyrate)/poly(ε⁃caprolactone) blends: a descriptive model [J]. Journal of Applied Polymer Science, 2016, 133(27): 1⁃12. |
26 | Hou X, Sun W, Liu Z, et al. Tailoring crystalline morphology via entropy⁃driven miscibility: toward ultratough, biodegradable, and durable polyhydroxybutyrate [J]. Macromolecules, 2022, 55(13): 5 527⁃5 534. |
27 | 马忠云,丁丽丽,付 伟.热压成型聚丙烯/玻璃纤维复合膜的结构及力学性能[J].中国塑料, 2021, 35(4): 42⁃46. |
MA Z Y, DING L L, FU W. Structure and mechanical properties of PP/GF composite films prepared by hot pressing molding[J]. China Plastics, 2021,35(4): 42⁃46. | |
28 | 张 豪,张晨清,陈 程,等.EVAC对PHB/PCL共混物性能的影响[J].工程塑料应用,2022,50(10):8⁃15. |
ZHANG H, ZHANG C Q, CHEN C,et al. The effect of EVAC on mechanical properties and characteristics of PHB/PCL blends [J].Engineering Plastics Application, 2022,50(10):8⁃15. | |
29 | 贾秋梓.聚乙烯/电气石复合薄膜的制备及性能研究[D].天津:天津科技大学, 2012. |
30 | Sivalingam G. Blends of poly(ε⁃caprolactone) and poly(vinyl acetate): mechanical properties and thermal degradation [J]. Polymer Degradation and Stability, 2004, 84(2): 345⁃351. |
31 | Nishida M, Yasuda K, Nishida M. Correlative analysis between morphology and mechanical properties of poly-3⁃hydroxybutyrate (PHB) blended with polycarprolactone (PCL) using solid⁃state NMR [J]. Polymer Testing, 2020, 91: 106780. |
[1] | 任国振, 王蒙蒙, 黄建建, 晋刚. 体积拉伸流场下PEEK/TLCP共混物的制备及性能研究[J]. 中国塑料, 2023, 37(8): 1-7. |
[2] | 赵萌萌, 杨红娟, 沈思宇, 冯硕, 张伟蒙, 胡晶. 聚乙二醇二缩水甘油醚对PLA/PBAT共混材料相容性及性能的影响[J]. 中国塑料, 2023, 37(8): 20-27. |
[3] | 马志蕊, 尹甜, 蒋志魁, 杨璠, 祝孟珂, 杨洋, 韩宇, 翁云宣, 张彩丽. PBS及其复合膜的制备及应用研究进展[J]. 中国塑料, 2023, 37(10): 24-33. |
[4] | 李朝, 贾元山. 增容剂马来酸酐接枝聚丙烯接枝率的酸碱反滴定法测定误差分析[J]. 中国塑料, 2023, 37(10): 77-84. |
[5] | 王富玉, 郭金强, 张玉霞. 聚合物原位成纤方法及其在PP共混体系中的应用[J]. 中国塑料, 2022, 36(3): 146-156. |
[6] | 程曼芳, 白继峰, 王文清, 雷良才, 李海英, 韩向艳, 胡跃鑫. 基于超支化聚对氯甲基苯乙烯聚合离子液体共混体系的制备与表征[J]. 中国塑料, 2022, 36(3): 40-47. |
[7] | 陈海英, 张晨清, 张豪, 陈程, 金光远, 卫灵君. 聚(甲基)硅氧烷/聚羟基丁酸酯/聚己内酯复合膜的制备及性能表征[J]. 中国塑料, 2022, 36(12): 50-56. |
[8] | 于雯霞, 党春蕾, 何艺琳, 王耀民, 张艳娥, 刘茜, 田华峰. 聚乙烯醇共混薄膜研究进展[J]. 中国塑料, 2022, 36(11): 164-173. |
[9] | 王培, 牛丽丽, 李静宇, 耿红梅. 医用多孔支架材料的制备及缓释性能分析[J]. 中国塑料, 2022, 36(11): 73-78. |
[10] | 王非, 刘丽超, 薛平. 熔纺PE⁃UHMW/PE⁃HD共混纤维的力学性能和晶体结构研究[J]. 中国塑料, 2022, 36(1): 47-52. |
[11] | 王振华, 杨正, 琚澳迎, 鲁世科, 刘保英, 房晓敏, 丁涛, 徐元清. 不同增容剂对玻璃纤维增强聚甲醛复合材料性能的影响研究[J]. 中国塑料, 2022, 36(1): 53-60. |
[12] | 张婷, 张彩丽, 宋鑫宇, 翁云宣. PBAT薄膜的制备及应用研究进展[J]. 中国塑料, 2021, 35(7): 115-125. |
[13] | 张耀成, 吴勇振, 李阳, 赵竹, 王国胜, 丁雪佳. 双季铵盐改性医用PVC抗菌材料[J]. 中国塑料, 2021, 35(7): 53-57. |
[14] | 王从龙, 张一辉, 王向东, 徐海云. 热塑性聚醚砜、聚醚酰亚胺泡沫材料的制备与研究现状[J]. 中国塑料, 2021, 35(2): 132-142. |
[15] | 谷琳, 朱钰婷, 何家隆, 朱惠豪, 马玉录, 谢林生. 基于微纳层叠共挤的PLA/PCL可降解微层薄膜的制备及性能研究[J]. 中国塑料, 2021, 35(11): 7-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||