京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2021, Vol. 35 ›› Issue (6): 85-92.DOI: 10.19491/j.issn.1001-9278.2021.06.014
• Plastic and Environment • Previous Articles Next Articles
FENG Yahui(), PAN Shenglin(), DAI Dongqing, ZHA Yanqing, YAN Wenxun
Received:
2021-01-18
Online:
2021-06-26
Published:
2021-06-23
CLC Number:
FENG Yahui, PAN Shenglin, DAI Dongqing, ZHA Yanqing, YAN Wenxun. Research Progress in Energy Consumption Evaluation of Polyethylene and Its Application Prospect in Cross⁃border Regeneration Field[J]. China Plastics, 2021, 35(6): 85-92.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2021.06.014
工序 | 物耗/kg | 能耗/103 kJ |
---|---|---|
合计 | 32.3×103 | |
原油开采 | 水49.87 | 510.34 |
运输过程 | 汽油85.05;柴油56.81 | 924.82 |
原油蒸馏 | 原油2326.28;水12.73;氢烃459.17;石脑油1392.77 | 842.65 |
乙烯制造 | C3 72.48;C4 442.87;水29.98;加氢尾油565.13 | 24 785.90 |
聚合造粒 | 乙烯958.93;丁烯37.07;己烯20.07;丁烷2.40;氢气0.11;水21.42 | 5 210.13 |
工序 | 物耗/kg | 能耗/103 kJ |
---|---|---|
合计 | 32.3×103 | |
原油开采 | 水49.87 | 510.34 |
运输过程 | 汽油85.05;柴油56.81 | 924.82 |
原油蒸馏 | 原油2326.28;水12.73;氢烃459.17;石脑油1392.77 | 842.65 |
乙烯制造 | C3 72.48;C4 442.87;水29.98;加氢尾油565.13 | 24 785.90 |
聚合造粒 | 乙烯958.93;丁烯37.07;己烯20.07;丁烷2.40;氢气0.11;水21.42 | 5 210.13 |
1 | 魏文静, 宋翔,周平,等. 聚乙烯生产全过程能耗的估算及分析[J]. 天津化工, 2016, 30(5): 21⁃22. |
WEI W J, SONG X, ZHOU P. Energy Consumption Estimates and Analysis on Polyethylene Production Process[J]. Tianjin Chemical Industry, 2016, 30(5): 21⁃22. | |
2 | 蔡 伟. 国内外高密度聚乙烯的供需现状及未来发展分析[J]. 石油化工技术与济, 2020, 36(4): 9⁃14. |
CAI W. Worldwide Supply⁃Demand Status and Future Development Analysis of High⁃density Polyethylene Resins[J]. Technology & Economics in Petrochemicals, 2020, 36(4): 9⁃14. | |
3 | 任慧勇. 我国聚乙烯产业现状及未来发展分析[J]. 化工新型材料, 2020, 48(7): 47⁃51. |
REN H Y. Current Situation and Future Development Analysis of PE in China[J]. New Chemical Materials, 2020, 48(7): 47⁃51. | |
4 | 《综合能耗计算通则》:[S]. 北京: 中国标准出版社, 2008. |
5 | 《环境管理 生命周期评价 原则与框架》:[S]. 北京: 中国标准出版社, 2008. |
6 | KHO O, HSIEN H. LCA of Plastic Waste Recovery into Recycled Materials, Energy and Fuels in Singapore[J]. Resource, Conservation and Recycling, 2019, 145: 67⁃77. |
7 | FEREYDOON M N, MOHSEN G, KOOROSH N, et al. Evaluation of Rutting Properties of High Density Polyethylene Modified Binders[J]. Materials and Structures, 2015, 48: 3 295⁃3 305. |
8 | SANTOS J, PHAM A, STASINOPOULOS P GIUSTOZZI F. Recycling Waste Plastics in Roads: A Life⁃Cycle Assessment Study Using Primary Data[J]. Science of the Total Environment, 2020, 751: 1⁃13. |
9 | MOSTAFIZUR R, IBRAHIM A A G, GOVINDASAMI P,et al. Recycling and Reusing Polyethylene Waste as Antistatic and Electromagnetic Interference Shielding Materials[J]. International Journal of Polymer Science, 2020, 4:1⁃15. |
10 | 岳忠春. 生命周期评价进展研究[J]. 内蒙古煤炭经济, 2018, 20: 56⁃57. |
YUE Z C. Research Progress of Life Cycle Assessment[J]. Inner Mongolia Coal Economy, 2018, 20: 56⁃57. | |
11 | 王 文. 高压低密度聚乙烯装置能耗分析及优化[J]. 石油化工技术与经济, 2015, 31(6): 41⁃44. |
WANG W. Energy Consumption Analysis and Optimization of High Pressure Low Density Polyethylene Unit[J]. Technology & Economics in Petrochemicals, 2015, 31(6): 41⁃44. | |
12 | ISAAC M, PAUL R, ARIF R. Analysis of Process Parameters Affecting Energy Consumption in Plastic Injection Moulding[J]. Procedia CIRP, 2018, 69: 342⁃347. |
13 | SCHLUTER B A, ROSANO M B. A Holistic Approach to Energy Efficiency Assessment in Plastic Processing[J]. Journal of Cleaner Production, 2016, 118: 19⁃28. |
14 | BEHNAM H, ALIREZA M. Applying Multivariate Linear Regression and Multi⁃Layer Perceptron Artificial Neural Network to Design an Energy Consumption Baseline in A Low Density Polyethylene Plant[J]. International Journal of Energy Sector Management, 2019, 13: 1 133⁃1 148. |
15 | 张佰运, 吕 明, 李宏冰. Unipol气相聚乙烯装置经济技术指标研究及控制措施[J]. 当代化工, 2019, 48(12) :2 911⁃2 914. |
ZHANG B Y, LV M, LI H B. Research on Economic and Technical Indicators of Unipol Polyethylene Device and Control Measures[J]. Contemporary Chemical Industry, 2019, 48(12) :2 911⁃2 914. | |
16 | 李 蔓. 聚乙烯塑料生产和废聚乙烯塑料资源化技术生命周期评价[D]. 哈尔滨: 哈尔滨工业大学, 2008. |
17 | 李兆坚. 常用塑料材料生命周期能耗计算分析[J]. 应用基础与工程科学学报, 2006, 14(1): 40⁃49. |
LI Z J. Calculation Analysis of Life Cycle Energy Consumption of Plastic Materials[J]. Journal of Basic Science and Engineering, 2006, 14(1): 40⁃49. | |
18 | 吴春巧. 常用塑料材料生命周期能耗计算分析[J].轻工科技, 2020, 36(6): 32⁃33. |
WU C Q. Calculation and Analysis of Life Cycle Energy Consumption of Common Plastic Materials[J].Light Industry Science and Technology, 2020, 36(6): 32⁃33. | |
19 | CAMILLA T, LAURA B, MARIO G,et al. Life Cycle Assessment of Reusable Plastic Crates (RPCs)[J]. Resources, 2019, 8(110): 1⁃15. |
20 | 刘 欣, 芦昕雨. 一种跨境再生资源生命周期能耗评估方法: 中国,202010384735.4[P]. 2020⁃07⁃17. |
21 | 《单位产品能源消耗限额编制通则》:[S]. 北京: 中国标准出版社, 2013. |
22 | 《综合能耗计算通则》:[S]. 北京: 中国标准出版社, 2020. |
23 | 《聚乙烯装置单位综合能耗计算方法及限额》:[S]. 北京: 中国标准出版社, 2008. |
24 | 《高压聚乙烯单位产品能源消耗限额》:[S]. 北京: 中国标准出版社, 2013. |
25 | 《聚乙烯单位产品能源消耗限额》:[S]. 北京: 中国标准出版社, 2014. |
26 | 《中华人民共和国固体废物污染环境防治法》(2020修订版). |
27 | 《关于全面禁止进口固体废物有关事项的公告》(国家生态环境部、商务部、国家发改委和海关总署等四部委联合公告2020年第53号) |
28 | 张云峰, 陈 鹏. 低密度聚乙烯再生料改性基础分析[J]. 橡塑技术与装备(塑料), 2015, 41(14): 72⁃73. |
ZHANG Y F, CHEN P. Basic Analysis on Modification of Recycled Low Density Polyethylene[J]. China Rubber/Plastics Technology and Equipment(Plastics), 2015, 41(14): 72⁃73. | |
29 | 夏 炎, 刘震宇, 朱 赪. 废旧塑料再生造粒力学性能修复方法及加工技术[J].中国资源综合利用, 2020, 38(3): 96⁃98. |
XIA Y, LIU Z Y, ZHU C. Mechanical Properties Repair Method and Processing Technology of Waste Plastic Regeneration Granulation[J]. China Resources Comprehensive Utilization, 2020, 38(3): 96⁃98. | |
30 | 许国志, 凌 伟, 杨 林, 等. 回收聚乙烯再生料补强增韧改性研究[J]. 中国塑料, 2000, 14(9): 62⁃66. |
XU G Z, LING W, YANG L, et al. Recycled Polyethy⁃lene Reinforced and Toughened by Carbon Black[J]. China Plastics, 2000, 14(9): 62⁃66. | |
31 | 刘世军, 孙德明, 张宁宁, 等. 复合抗氧剂对再生聚乙烯抗老化性能的影响[J]. 大庆师范学院学报, 2019, 39(3): 33⁃36. |
LIU S J, SUN D M, ZHANG N N, et al. Effect of Composite Antioxidants on Aging Resistance of Recycled Polyethylene[J]. Journal of Da Qing Normal University, 2019, 39(3): 33⁃36. | |
32 | 刘广建. 改性超高分子量聚乙烯的粘弹性滞后能耗研究[J]. 中国塑料, 2001, 15(1): 35⁃38. |
LIU G J. Research on Visco⁃elastic Hysteresis of Energy Loss of Modified UHMWPE[J]. China Plastics, 2001, 15(1): 35⁃38. | |
33 | SULEYMAN I, ABDULSAMEH D, KASIM M. Recycling the Low⁃density Polyethylene Pellets in the Pervious Concrete Production[J]. Journal of Material Cycles and Waste Management, 2020, 10: 1 007⁃1 016. |
34 | SABZOI N, MUHAMMAD J. Recycled Plastic as Bitumen Modifier: the Role of Recycled Linear Low⁃Density Polyethylene in the Modification of Physical, Chemical and Rheological Properties of Bitumen[J]. Journal of Cleaner Production, 2020, 266: 1⁃12. |
35 | RAFAEL J, CARLOS D. Incorporation of Recycled High⁃Density Polyethylene to Polyethylene Pipe Grade Resins to Increase Close⁃Loop Recycling and Underpin the Circular Economy[J]. Journal of Cleaner Production, 2020, 276: 1⁃11. |
36 | YOGESH D, ER V S S. Modification of Bituminous Mix by Adding Waste Polythene[J]. International Journal of Trend in Scientific Research and Development, 2020, 4: 1 388⁃1 393. |
37 | SERGII K, VASYL N. Improving Quality and Durability of Bitumen and Asphalt Concrete by Modification Using Recycled Polyethylene Based Polymer Composition[J]. Procedia Engineering, 2016, 143: 119⁃127. |
38 | MAALI D R, SAWALHA D S. Improvement of Tensile Properties of Recycled Low⁃Density Polyethylene by Incorporation of Calcium Carbonate Particles[J]. International Journal of Engineering and Management Research, 2018, 8(3): 195⁃200. |
39 | 康齐德. 聚乙烯生产工艺与应用的研究[J]. 石化技术, 2020(9):167⁃176. |
KANG Q D. Study on Production Process and Application of Polyethylene[J]. Petrochemical Technology, 2020(9):167⁃176. | |
40 | 王 庆. 国内外聚乙烯生产工艺研究新进展[J]. 工艺与设备, 2019, 45(7): 99⁃100. |
WANG Q. New Progress in Polyethylene Production Technology at Home and Abroad[J]. Technology and Equipment, 2019, 45(7): 99⁃100. | |
41 | 肖 军. 废旧塑料回收再生开辟循环利用新途径[J]. 乙醛醋酸化工, 2020, 2: 23⁃27. |
XIAO J. Recycling of Waste Plastics Opens Up A New Way of Recycling[J]. Acetaldehyde Acetic Acid Chemical Industry, 2020, 2: 23⁃27. | |
42 | 王德玉. 聚乙烯改性的研究进展[J]. 新材料与新技术, 2019, 45(3): 61. |
WANG D Y. Advances in Research on Modification of Polyethylene[J]. New Material and New Technology, 2019, 45(3): 61. | |
43 | 王心蕊, 胡 平, 成诞人. 炭黑在超高分子量聚乙烯阻燃改性中的作用[J]. 现代化工, 2001, 21(6): 38⁃40. |
WANG X R, HU P, CHENG D R. The Role of Carbon Black in Flame Retardation and Modification of Ultrahigh Molecular Weight Polyethylene[J]. Modern Chemical Industry, 2001, 21(6): 38⁃40. |
[1] | LI Guo, ZHU Huihao, MA Yulu, WANG Yu, JI Huajian, XIE Linsheng. Preparation and properties of microporous breathable films with high thermal conductivity [J]. China Plastics, 2022, 36(7): 14-20. |
[2] | WU Xiongjie, ZHU Dongbo, SUN Jiangbo, GAO Longmei, CHU Yu, CHENG Jinsong, XIE Aidi. Study on application performance of polyethylene/CaSO4 nanoparticle composite flexible packaging [J]. China Plastics, 2022, 36(6): 10-15. |
[3] | DONG Shaoce, LI Chenggao, ZHANG Xufeng, XIAN Guijun. Environmental impact assessment for manufacture of plant fiber honeycomb core [J]. China Plastics, 2022, 36(6): 108-115. |
[4] | LEI Yujie, CHEN Minghuan, WANG Jieyao, CHEN Wangzhi, LI Lei. Cross⁃linked foaming process and performance of recycled polyethylene [J]. China Plastics, 2022, 36(6): 124-129. |
[5] | ZHU Jingyun, YI Huijun, YAN Wei, LI Dawei. Research and development of polyethylene special materials for compound films [J]. China Plastics, 2022, 36(6): 77-80. |
[6] | XIA Yunxia, LI Lei, LUO Zhangsheng, ZHU Qianqin, HE Lijun. Preparation and properties of recycled polyethylene non⁃woven fabrics based on flash evaporation [J]. China Plastics, 2022, 36(5): 14-18. |
[7] | WANG Ke, LONG Chunguang. Mechanical and tribological properties of ultra⁃high molecular weight polyethylene/sepiolite fiber composites [J]. China Plastics, 2022, 36(5): 19-23. |
[8] | WEN Yuan, MAO Xianpeng, XU Kejie. Effect of sample thickness on tensile properties of polyethylene [J]. China Plastics, 2022, 36(4): 43-46. |
[9] | XU Rongxia, WEI Gang, WEI Lilan, WU Jiecui, JIANG Yujiang. Friction and wear properties of PE⁃UHMW modified with nano⁃SiO2 and PA6 [J]. China Plastics, 2022, 36(4): 47-52. |
[10] | LIU Qiang, LU Yahong, WU Hui, MA Yuhao, ZHANG Yupeng, SUN Wenxiao, ZHANG Hong. Microbial degradation of polyethylene plastics [J]. China Plastics, 2022, 36(3): 120-126. |
[11] | HENG Yue, XUE Nanxiang, CHEN Zhuangxin, LEI Caihong, XU Ruijie. Dynamic rheological behavior and compatibility of polyethylene/paraffin oil blends [J]. China Plastics, 2022, 36(2): 13-18. |
[12] | ZHANG Xuemin, HOU Lin, FENG Jinmao, YAO Zhongliang, ZHONG Mingqiang. Study on natural aging behavior of buried polyethylene water supply pipeline in service [J]. China Plastics, 2022, 36(2): 49-55. |
[13] | LI Bo, GONG Jun, JIN Xueyi, MENG Xiaoyu. Effect of carbon nanotube modification method on properties of polyamide 11 [J]. China Plastics, 2022, 36(2): 61-66. |
[14] | LI Yongqing, YANG Xiaolong, CHEN Wenjing, YAN Xiaokun, MA Xiuqing. Molecular dynamics simulation of modifier and high⁃density polyethylene intercalate and exfoliate montmorillonite [J]. China Plastics, 2022, 36(2): 67-74. |
[15] | WANG Yazhen, LIU Xinyu, DONG Shaobo, LAN Tianyu, ZU Liwu. Compatibilizing effect on performance of PE⁃HD/corn stalk biochar composites [J]. China Plastics, 2022, 36(1): 128-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||