
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (2): 61-69.DOI: 10.19491/j.issn.1001-9278.2024.02.010
收稿日期:
2023-08-14
出版日期:
2024-02-26
发布日期:
2024-02-03
通讯作者:
祝钧(1966—),男,教授,从事化妆品功效原料研发,zhujun@btbu.edu.cn基金资助:
Received:
2023-08-14
Online:
2024-02-26
Published:
2024-02-03
Contact:
ZHU Jun
E-mail:zhujun@btbu.edu.cn
摘要:
2,5⁃呋喃二甲酸(FDCA)是一种能够合成生物基聚酯的重要单体,目前在新型可降解塑料等领域具有广阔的应用前景,如何高效且低廉地制备FDCA已经逐步成为了热点问题。本文系统地综述了近年来通过5⁃羟甲基糠醛(HMF)路线合成FDCA的主要研究进展,首先介绍了HMF路线和其他路线的联系和区别,解释了HMF路线的优点。其次,详细介绍和分析了由HMF合成FDCA的方法,包括直接氧化法、贵金属催化法、过渡金属催化法、光电催化氧化法、酶催化法和全细胞生物催化法。此外,在介绍上述方法的基础上,说明了这些方法的优缺点,总结了HMF路线制备FDCA目前仍面临的挑战,包括催化剂的选择、改善与开发,反应条件优化和对中间产物的处理,还对未来由HMF路线来制备FDCA的前景进行展望。
中图分类号:
许智扬, 祝钧. 5⁃羟甲基糠醛路线合成2,5⁃呋喃二甲酸的研究进展[J]. 中国塑料, 2024, 38(2): 61-69.
XU Zhiyang, ZHU Jun. Research progress in synthesis of 2,5⁃furanedicarboxylic acid through 5⁃hydroxymethylfurfural route[J]. China Plastics, 2024, 38(2): 61-69.
1 | Wang J G, Liu X Q, Zhu J. Research progress on the synthesis of bio⁃based aromatic platform chemical 2, 5⁃furandicarboxylic acid[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 672⁃682. |
2 | YOU B, LIU X, JIANG N, et al. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization[J]. Journal of the American Chemical Society, 2016, 138(41): 13 639⁃13 646. |
3 | MIURA T, KAKINUMA H, KAWANO T, et al. Preparation of furan-2,5⁃dicarboxylic acid by oxidizing furan ring compounds:20070232815 [P]. 2007⁃10⁃14. |
4 | 陈天明,林鹿.高锰酸钾法制备2,5⁃呋喃二甲酸[J].化学试剂, 2011,33(1):11⁃12. |
CHEN T M, LIN L. Preparation of 2,5⁃furanedicarboxylic acid by potassium permanganate method [J]. Chemical Reagents, 2011,33 (1): 11⁃12. | |
5 | 宋开贺,苏坤梅,李振环. 5⁃羟甲基糠醛催化合成2,5⁃呋喃二甲酸的研究[J].现代化工, 2019, 39(9): 135⁃140. |
SONG K H, SU K M, LI Z H. Study on the catalytic synthesis of 2,5⁃furanedicarboxylic acid using 5⁃hydroxymethylfurfural [J]. Modern Chemical Industry, 2019, 39(9): 135⁃140. | |
6 | Zuwei X, Ning Z, Yu S, et al. Reaction⁃controlled phase⁃transfer catalysis for propylene epoxidation to propylene oxide[J]. Science, 2001, 292(5 519): 1 139⁃1 141. |
7 | Guo M L. Quaternary ammonium decatungstate catalyst for oxidation of alcohols[J]. Green chemistry, 2004, 6(6): 271⁃273. |
8 | GUO M L, LI H Z. Selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide over tetra⁃alkylpyridinium octamolybdate catalysts[J]. Green chemistry,2007,9(5):421⁃423. |
9 | Li S, Su K, Li Z, et al. Selective oxidation of 5⁃hydroxymethylfurfural with H2O2 catalyzed by a molybdenum complex[J]. Green Chemistry, 2016, 18(7): 2 122⁃2 128. |
10 | Hansen T S, Sádaba I, García⁃Suárez E J, et al. Cu catalyzed oxidation of 5⁃hydroxymethylfurfural to 2, 5⁃diformylfuran and 2, 5⁃furandicarboxylic acid under benign reaction conditions[J]. Applied Catalysis A: General, 2013, 456: 44⁃50. |
11 | Schau⁃Magnussen M, Gorbanev Y Y, Kegnæs S, et al. Magnesium and nickel (II) furan-2, 5⁃dicarboxylate[J]. Acta Crystallographica Section C: Crystal Structure Communications, 2011, 67(10): 327⁃330. |
12 | Gorbanev Y Y, Kegnæs S, Riisager A. Selective aerobic oxidation of 5⁃hydroxymethylfurfural in water over solid ruthenium hydroxide catalysts with magnesium⁃based supports[J]. Catalysis letters, 2011, 141: 1 752⁃1 760. |
13 | GAWADE A B, NAKHATE A V, YADAV G D. Selective synthesis of 2,5⁃furandicarboxylic acid by oxidation of 5⁃hydroxy⁃methylfurfural over MnFe2O4 catalyst[J]. Catal Today, 2018, 309: 119⁃125. |
14 | Lei Z, Zelin L I, Bolong L I, et al. Comprehensive review on green synthesis of bio⁃based 2, 5⁃furandicarboxylic acid[J]. Journal of East China Normal University (Natural Science), 2023, (1): 160. |
15 | Chen C, Wang L, Zhu B, et al. 2, 5⁃Furandicarboxylic acid production via catalytic oxidation of 5⁃hydroxymethylfurfural: Catalysts, processes and reaction mechanism[J]. Journal of Energy Chemistry, 2021, 54: 528⁃554. |
16 | Zhang Z, Deng K. Recent advances in the catalytic synthesis of 2, 5⁃furandicarboxylic acid and its derivatives[J]. ACS Catalysis, 2015, 5(11): 6 529⁃6 544. |
17 | Siyo B, Schneider M, Radnik J, et al. Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials[J]. Applied Catalysis A: General, 2014, 478: 107⁃116. |
18 | Wang Y, Yu K, Lei D, et al. Basicity⁃tuned hydrotalcite⁃supported Pd catalysts for aerobic oxidation of 5⁃hydroxymethyl-2⁃furfural under mild conditions[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4 752⁃4 761. |
19 | Gao T, Chen J, Fang W, et al. Ru/Mn X Ce1O Y catalysts with enhanced oxygen mobility and strong metal⁃support interaction: Exceptional performances in 5⁃hydroxymethylfurfural base⁃free aerobic oxidation[J]. Journal of Catalysis, 2018, 368: 53⁃68. |
20 | Xie J, Nie J, Liu H. Aqueous⁃phase selective aerobic oxidation of 5⁃hydroxymethylfurfural on Ru/C in the presence of base[J]. Chinese Journal of Catalysis, 2014, 35(6): 937⁃944. |
21 | Gorbanev Y Y, Kegnæs S, Riisager A. Selective aerobic oxidation of 5⁃hydroxymethylfurfural in water over solid ruthenium hydroxide catalysts with magnesium⁃based supports[J]. Catalysis letters, 2011, 141: 1 752⁃1 760. |
22 | MIAO Z, WU T, LI J, et al. Aerobic oxidation of 5⁃hydroxymethylfurfural(HMF) effectively catalyzed by a Ce0.8Bi0.2O2⁃δ supported Pt catalyst at room temperature[J]. RSC Advances, 2015,5(26): 19 823⁃19 829. |
23 | 陈光宇,吴林波,李伯耿. HMF路线合成生物基单体2, 5⁃呋喃二甲酸的研究进展[J].化工进展, 2018, 37(8): 3 146⁃3 154. |
CHEN G Y, WU L B, LI B G. Research progress in the synthesis of bio based monomers 2,5⁃furanedicarboxylic acid using HMF route [J]. Chemical Progress, 2018, 37 (8): 3 146⁃3 154 | |
24 | Zhang Y, Xue Z, Wang J, et al. Controlled deposition of Pt nanoparticles on Fe3O4@carbon microspheres for efficient oxidation of 5⁃hydroxymethylfurfural[J]. RSC Advances, 2016, 6(56): 51 229⁃51 237. |
25 | Taarning E, Nielsen I S, Egeblad K, et al. Chemicals from renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts[J]. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2008, 1(1/2): 75⁃78. |
26 | Gorbanev Y Y, Klitgaard S K, Woodley J M, et al. Gold‐catalyzed aerobic oxidation of 5‐hydroxymethylfurfural in water at ambient temperature[J]. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2009, 2(7): 672⁃675. |
27 | Casanova O, Iborra S, Corma A. Biomass into chemicals: aerobic oxidation of 5‐hydroxymethyl‐2‐furfural into 2, 5‐furandicarboxylic acid with gold nanoparticle catalysts[J]. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2009, 2(12): 1 138⁃1 144. |
28 | Zheng L, Zhao J, Du Z, et al. Efficient aerobic oxidation of 5⁃hydroxymethylfurfural to 2, 5⁃furandicarboxylic acid on Ru/C catalysts[J]. Science China Chemistry, 2017, 60: 950⁃957. |
29 | Pichler C M, Al‐Shaal M G, Gu D, et al. Ruthenium Supported on High‐Surface‐Area Zirconia as an Efficient Catalyst for the Base‐Free Oxidation of 5‐Hydroxymethylfurfural to 2, 5‐Furandicarboxylic Acid[J]. ChemSusChem, 2018, 11(13): 2 083⁃2 090. |
30 | Danielli da Fonseca Ferreira A, Dorneles de Mello M, da Silva M A P. Catalytic Oxidation of 5⁃hydroxymethylfurfural to 2, 5⁃furandicarboxylic Acid over Ru/Al2O3 in a Trickle⁃bed Reactor[J]. Industrial & Engineering Chemistry Research, 2018, 58(1): 128⁃137. |
31 | Liu B, Ren Y, Zhang Z. Aerobic oxidation of 5⁃hydroxymethylfurfural into 2, 5⁃furandicarboxylic acid in water under mild conditions[J]. Green Chemistry, 2015, 17(3): 1 610⁃1 617. |
32 | Albonetti S, Lolli A, Morandi V, et al. Conversion of 5⁃hydroxymethylfurfural to 2, 5⁃furandicarboxylic acid over Au⁃based catalysts: Optimization of active phase and metal–support interaction[J]. Applied Catalysis B: Environmental, 2015, 163: 520⁃530. |
33 | Cheng X, Li S, Liu S, et al. Highly efficient catalytic oxidation of 5⁃hydroxymethylfurfural to 2, 5⁃furandicarboxylic acid using bimetallic Pt⁃Cu alloy nanoparticles as catalysts[J]. Chemical Communications, 2022, 58(8): 1 183⁃1 186. |
34 | Hayashi E, Komanoya T, Kamata K, et al. Heterogeneously‐catalyzed aerobic oxidation of 5‐hydroxymethylfurfural to 2, 5‐furandicarboxylic acid with MnO2 [J]. ChemSusChem, 2017, 10(4): 654⁃658. |
35 | Neațu F, Marin R S, Florea M, et al. Selective oxidation of 5⁃hydroxymethyl furfural over non⁃precious metal heterogeneous catalysts[J]. Applied Catalysis B: Environmental, 2016, 180: 751⁃757. |
36 | Liu X, Xiao J, Ding H, et al. Catalytic aerobic oxidation of 5⁃hydroxymethylfurfural over VO2+ and Cu2+ immobilized on amino functionalized SBA-15[J]. Chemical Engineering Journal, 2016, 283: 1 315⁃1 321. |
37 | 白继峰, 卢虹竹, 杨雨, 等. 过渡金属催化 5⁃羟甲基糠醛合成 2, 5⁃呋喃二甲酸研究进展[J]. 生物质化学工程, 2022, 56(2): 49⁃59. |
BAI J F, LU H Z, YANG Y, et al. Research progress in the synthesis of 2,5⁃furanedicarboxylic acid from 5⁃hydroxymethylfurfural catalyzed by transition metals [J].Biomass Chemical Engineering, 2022, 56 (2): 49⁃59. | |
38 | Li K, Sun Y. Electrocatalytic upgrading of biomass‐derived intermediate compounds to value‐added products[J]. Chemistry⁃A European Journal, 2018, 24(69): 18 258⁃18 270. |
39 | Akhade S A, Singh N, Gutiérrez O Y, et al. Electrocatalytic hydrogenation of biomass⁃derived organics: a review[J]. Chemical reviews, 2020, 120(20): 11 370⁃11 419. |
40 | Cai M, Zhang Y, Zhao Y, et al. Two⁃dimensional metal⁃organic framework nanosheets for highly efficient electrocatalytic biomass 5⁃(hydroxymethyl) furfural (HMF) valorization[J]. Journal of Materials Chemistry A, 2020, 8(39): 20 386⁃20 392. |
41 | Taitt B J, Nam D H, Choi K S. A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5⁃hydroxymethylfurfural to 2, 5⁃furandicarboxylic acid[J]. ACS Catalysis, 2018, 9(1): 660⁃670. |
42 | Gao L, Liu Z, Ma J, et al. NiSe@ NiOx core⁃shell nanowires as a non⁃precious electrocatalyst for upgrading 5⁃hydroxymethylfurfural into 2, 5⁃furandicarboxylic acid[J]. Applied Catalysis B: Environmental, 2020, 261: 118235. |
43 | Zhang P, Sheng X, Chen X, et al. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source[J]. Angewandte Chemie, 2019, 131(27): 9 253⁃9 257. |
44 | Cha H G, Choi K S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell[J]. Nature chemistry, 2015, 7(4): 328⁃333. |
45 | Xu S, Zhou P, Zhang Z, et al. Selective oxidation of 5⁃hydroxymethylfurfural to 2, 5⁃furandicarboxylic acid using O2 and a photocatalyst of Co⁃thioporphyrazine bonded to g⁃C3N4 [J]. Journal of the American Chemical Society, 2017, 139(41): 14 775⁃14 782. |
46 | Marcì G, García⁃López E I, Palmisano L. Polymeric carbon nitride (C3N4) as heterogeneous photocatalyst for selective oxidation of alcohols to aldehydes[J]. Catalysis Today, 2018, 315: 126⁃137. |
47 | Han G, Jin Y H, Burgess R A, et al. Visible⁃light⁃driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets[J]. Journal of the American Chemical Society, 2017, 139(44): 15 584⁃15 587. |
48 | 蔡佳伟, 李亢悔, 蒋涌泉, 等. HMF 制备 FDCA 的新型催化工艺研究进展[J]. 生物质化学工程, 2022, 56(6): 61⁃70. |
CAI J W, LI K H, JIANG Y Q, et al. Research progress on new catalytic processes for preparing FDCA from HMF [J]. Biomass Chemical Engineering, 2022, 56 (6): 61⁃70. | |
49 | Zhang C, Chang X, Zhu L, et al. Highly efficient and selective production of FFCA from CotA⁃TJ102 laccase⁃catalyzed oxidation of 5⁃HMF[J]. International Journal of Biological Macromolecules, 2019, 128: 132⁃139. |
50 | Dijkman W P, Groothuis D E, Fraaije M W. Enzyme⁃catalyzed oxidation of 5⁃hydroxymethylfurfural to furan-2, 5⁃dicarboxylic acid[J]. Angewandte Chemie International Edition, 2014, 53(25): 6 515⁃6 518. |
51 | Rudroff F, Mihovilovic M D, Gröger H, et al. Opportunities and challenges for combining chemo⁃and biocatalysis[J]. Nature catalysis, 2018, 1(1): 12⁃22. |
52 | Carro J, Ferreira P, Rodríguez L, et al. 5⁃hydroxymethylfurfural conversion by fungal aryl⁃alcohol oxidase and unspecific peroxygenase[J]. The FEBS Journal, 2015, 282(16): 3 218⁃3 229. |
53 | McKenna S M, Mines P, Law P, et al. The continuous oxidation of HMF to FDCA and the immobilisation and stabilisation of periplasmic aldehyde oxidase (PaoABC)[J]. Green Chemistry, 2017, 19(19): 4 660⁃4 665. |
54 | 刘雪晨, 邢娟娟, 王海鹏, 等. HMF催化合成生物基聚酯单体FDCA[J]. 化学进展, 2020, 32(9): 1294. |
LIU X C, XING J J, WANG H P, et al. HMF catalyzed synthesis of bio based polyester monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294. | |
55 | Wang K F, Liu C, Sui K, et al. Efficient catalytic oxidation of 5⁃hydroxymethylfurfural to 2, 5⁃furandicarboxylic acid by magnetic laccase catalyst[J]. ChemBioChem, 2018, 19(7): 654⁃659. |
56 | Koopman F, Wierckx N, de Winde J H, et al. Efficient whole⁃cell biotransformation of 5⁃(hydroxymethyl) furfural into FDCA, 2, 5⁃furandicarboxylic acid[J]. Bioresource Technology, 2010, 101(16): 6 291⁃6 296. |
57 | Yang C F, Huang C R. Biotransformation of 5⁃hydroxy⁃methylfurfural into 2, 5⁃furan⁃dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate[J]. Bioresource Technology, 2016, 214: 311⁃318. |
58 | Yang C F, Huang C R. Isolation of 5⁃hydroxymethylfurfural biotransforming bacteria to produce 2, 5⁃furan dicarboxylic acid in algal acid hydrolysate[J]. Journal of bioscience and bioengineering, 2018, 125(4): 407⁃412. |
59 | Rajesh R O, Godan T K, Rai A K, et al. Biosynthesis of 2, 5⁃furan dicarboxylic acid by Aspergillus flavus APLS-1: Process optimization and intermediate product analysis[J]. Bioresource Technology, 2019, 284: 155⁃160. |
60 | Yang Z Y, Wen M, Zong M H, et al. Synergistic chemo/biocatalytic synthesis of 2, 5⁃furandicarboxylic acid from 5⁃hydroxymethylfurfural[J]. Catalysis Communications, 2020, 139: 105979. |
61 | Krystof M, Pérez⁃Sánchez M, Domínguez de María P. Lipase⁃mediated selective oxidation of furfural and 5‐hydroxymethylfurfural[J]. ChemSusChem, 2013, 6(5): 826⁃830. |
62 | Yuan H, Li J, Shin H, et al. Improved production of 2, 5⁃furandicarboxylic acid by overexpression of 5⁃hydroxymethylfurfural oxidase and 5⁃hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60[J]. Bioresource technology, 2018, 247: 1 184⁃1 188. |
63 | Jia H Y, Zong M H, Zheng G W, et al. One‐pot enzyme cascade for controlled synthesis of furancarboxylic acids from 5‐hydroxymethylfurfural by H2O2 internal recycling[J]. ChemSusChem, 2019, 12(21): 4 764⁃4 768. |
[1] | 戚士界, 游翔宇, 王瑞晨, 周琳菲, 张慧洁. 高木质素含量聚乳酸共混材料的制备及其性能研究[J]. 中国塑料, 2024, 38(2): 45-51. |
[2] | 孔子萌, 张简, 邓雅馨, 徐雪玲, 陈雅君. 阻燃聚丁二酸丁二醇酯的研究进展[J]. 中国塑料, 2024, 38(2): 105-117. |
[3] | 陈程, 张豪, 杨梦瑶, 陈海英, 孙昊, 卫灵君. 聚醋酸乙烯酯(PVAc)对PHB/PCL共混物理化性能研究[J]. 中国塑料, 2024, 38(1): 14-20. |
[4] | 冯英健, 胡冬冬, 魏少龙, 钱军, 熊伟, 姚舜, 赵玲. 长链支化聚对苯二甲酸乙二醇酯的制备及其超临界CO2挤出发泡性能研究[J]. 中国塑料, 2023, 37(11): 1-9. |
[5] | 马志蕊, 尹甜, 蒋志魁, 杨璠, 祝孟珂, 杨洋, 韩宇, 翁云宣, 张彩丽. PBS及其复合膜的制备及应用研究进展[J]. 中国塑料, 2023, 37(10): 24-33. |
[6] | 顾亥楠, 应杰, 邱琪浩, 陈孟, 王晨晔, 童奇峰. 基于生物基聚碳酸酯的应用开发[J]. 中国塑料, 2023, 37(10): 34-39. |
[7] | 焦洋, 王龙震, 蔡卓瑞, 刘荣昊, 张玉霞, 周洪福. 高发泡倍率PBAT泡沫的制备及回弹性能的探究[J]. 中国塑料, 2023, 37(9): 19-27. |
[8] | 梅园, 李振, 徐禄波, 麻一明. 再生PCTG增韧改性再生PET的性能研究[J]. 中国塑料, 2023, 37(9): 39-43. |
[9] | 刘昊育, 辛菲, 杜家盈, 樊晓玲. 无卤阻燃聚酯复合材料研究进展[J]. 中国塑料, 2023, 37(1): 133-143. |
[10] | 刘金宇, 贾勇星, 温变英, 邱穆楠. 生物降解聚酯/秸秆纤维全生物降解复合材料研究进展[J]. 中国塑料, 2022, 36(11): 183-191. |
[11] | 王培, 牛丽丽, 李静宇, 耿红梅. 医用多孔支架材料的制备及缓释性能分析[J]. 中国塑料, 2022, 36(11): 73-78. |
[12] | 姚逸, 张尔杰, 卢昌利, 王超军, 焦建, 曾祥斌. 食品接触法规对PBS发展的影响浅析[J]. 中国塑料, 2022, 36(10): 125-130. |
[13] | 邓玉明, 唐蕾, 罗世鹏. 超高效液相色谱⁃四极杆⁃飞行时间质谱对含PET食品接触材料中可迁移非挥发性物质的筛查研究[J]. 中国塑料, 2022, 36(10): 131-137. |
[14] | 张学敏, 黄浩瀚, 李厚补, 齐国权, 赵元超, 丁晗, 高雄, 杨文辉. 聚酯纤维增强热塑性塑料复合管扣压接头密封性能研究与结构优化[J]. 中国塑料, 2022, 36(10): 90-97. |
[15] | 黄嘉伟, 韩小龙, 吴悠, 靳玉娟, 王朝. 生物基工程聚酯弹性体对聚(3⁃羟基丁酸酯⁃co⁃3⁃羟基戊酸酯)的增韧改性研究[J]. 中国塑料, 2022, 36(9): 24-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||