
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (8): 28-35.DOI: 10.19491/j.issn.1001-9278.2022.08.005
杨智1, 奚望2,3,4(), 钱立军2,3,4, 胡立双1
收稿日期:
2022-04-27
出版日期:
2022-08-26
发布日期:
2022-08-22
通讯作者:
奚望(1992—),男,讲师,从事阻燃材料研究,xiwang@btbu.edu.cn基金资助:
YANG Zhi1, XI Wang2,3,4(), QIAN Lijun2,3,4, HU Lishuang1
Received:
2022-04-27
Online:
2022-08-26
Published:
2022-08-22
Contact:
XI Wang
E-mail:xiwang@btbu.edu.cn
摘要:
以甲基膦酸二甲酯(DMMP)、10?(2,5?二羟基甲苯)?10?氢?9?氧杂?10?磷酰杂菲?10?氧化物(DOPO?HQ)、可膨胀石墨(EG)和氢氧化铝(ATH)构建了四元阻燃复合体系,并通过热失重分析仪(TG)、锥形量热仪、极限氧指数分析仪等研究了其在硬质聚氨酯泡沫(RPUF)中的阻燃行为。结果表明,四元阻燃体系能够在较宽温度区间内发挥逐级释放的协同阻燃效应;DOPO?HQ能够与EG/DMMP/ATH三元阻燃体系形成加合阻燃效应,使得RPUF复合材料的极限氧指数(LOI)提升至30.8 %;与采用EG/DMMP/ATH三元阻燃体系的RPUF复合材料相比,采用加入DOPO?HQ的四元阻燃体系的RPUF复合材料的热释放速率峰值(PHRR)、总热释放量(THR)、总烟释放量(TSR)均有所下降,残炭率得到了进一步提升,说明DOPO?HQ与EG/DMMP/ATH所构建的四元阻燃体系在成炭性方面具有协同效应;此外,通过扫描电子显微镜(SEM)对残炭进行表征,验证了四元阻燃体系在凝聚相中能够发挥优异的成炭阻隔效应,并能够在燃烧的初期、中期和末期发挥逐级释放阻燃效应。
中图分类号:
杨智, 奚望, 钱立军, 胡立双. 四元复合体系在硬质聚氨酯泡沫材料中的逐级释放阻燃行为研究[J]. 中国塑料, 2022, 36(8): 28-35.
YANG Zhi, XI Wang, QIAN Lijun, HU Lishuang. Progressive flame⁃retardant actions of quaternary composite system in rigid polyurethane foams[J]. China Plastics, 2022, 36(8): 28-35.
样品 | 450L | 催化剂 | PAPI | DMMP | DOPO⁃HQ | EG | ATH |
---|---|---|---|---|---|---|---|
RPUF | 72 | 14.76 | 108 | - | - | - | - |
8D/6E/12A | 72 | 14.76 | 108 | 15.58 | - | 11.69 | 23.37 |
8D/2DH/6E/12A | 72 | 14.76 | 108 | 15.58 | 3.90 | 11.69 | 23.37 |
8D/4DH/6E/12A | 72 | 14.76 | 108 | 15.58 | 7.80 | 11.69 | 23.37 |
2DH | 72 | 14.76 | 108 | - | 3.90 | - | - |
4DH | 72 | 14.76 | 108 | - | 7.80 | - | - |
样品 | 450L | 催化剂 | PAPI | DMMP | DOPO⁃HQ | EG | ATH |
---|---|---|---|---|---|---|---|
RPUF | 72 | 14.76 | 108 | - | - | - | - |
8D/6E/12A | 72 | 14.76 | 108 | 15.58 | - | 11.69 | 23.37 |
8D/2DH/6E/12A | 72 | 14.76 | 108 | 15.58 | 3.90 | 11.69 | 23.37 |
8D/4DH/6E/12A | 72 | 14.76 | 108 | 15.58 | 7.80 | 11.69 | 23.37 |
2DH | 72 | 14.76 | 108 | - | 3.90 | - | - |
4DH | 72 | 14.76 | 108 | - | 7.80 | - | - |
样品 | T5 %/℃ | T50 %/℃ | 700 ℃残炭率/% |
---|---|---|---|
RPUF | 271 | 352 | 19.0 |
8D/6E/12A | 195 | 363 | 25.7 |
8D/2DH/6E/12A | 188 | 357 | 25.1 |
8D/4DH/6E/12A | 203 | 361 | 27.9 |
2DH | 267 | 353 | 18.6 |
4DH | 270 | 351 | 19.5 |
样品 | T5 %/℃ | T50 %/℃ | 700 ℃残炭率/% |
---|---|---|---|
RPUF | 271 | 352 | 19.0 |
8D/6E/12A | 195 | 363 | 25.7 |
8D/2DH/6E/12A | 188 | 357 | 25.1 |
8D/4DH/6E/12A | 203 | 361 | 27.9 |
2DH | 267 | 353 | 18.6 |
4DH | 270 | 351 | 19.5 |
样品 | PHRR/kW·m-2 | THR/MJ·m-2 | EHC/ MJ·kg-1 | TSR/m2·m-2 | av⁃COY/kg·kg-1 | av⁃CO2Y/kg·kg-1 | 残炭率/% |
---|---|---|---|---|---|---|---|
RPUF | 344 | 32.0 | 25.0 | 747 | 0.14 | 2.36 | 5.3 |
8D/6E/12A | 159 | 24.0 | 20.9 | 541 | 0.16 | 2.17 | 29.4 |
8D/2DH/6E/12A | 158 | 23.4 | 20.6 | 569 | 0.16 | 2.13 | 32.2 |
8D/4DH/6E/12A | 157 | 22.9 | 20.2 | 564 | 0.15 | 2.08 | 32.6 |
2DH | 305 | 24.2 | 23.1 | 695 | 0.24 | 2.48 | 1.5 |
4DH | 302 | 24.5 | 23.3 | 738 | 0.24 | 2.52 | 6.2 |
样品 | PHRR/kW·m-2 | THR/MJ·m-2 | EHC/ MJ·kg-1 | TSR/m2·m-2 | av⁃COY/kg·kg-1 | av⁃CO2Y/kg·kg-1 | 残炭率/% |
---|---|---|---|---|---|---|---|
RPUF | 344 | 32.0 | 25.0 | 747 | 0.14 | 2.36 | 5.3 |
8D/6E/12A | 159 | 24.0 | 20.9 | 541 | 0.16 | 2.17 | 29.4 |
8D/2DH/6E/12A | 158 | 23.4 | 20.6 | 569 | 0.16 | 2.13 | 32.2 |
8D/4DH/6E/12A | 157 | 22.9 | 20.2 | 564 | 0.15 | 2.08 | 32.6 |
2DH | 305 | 24.2 | 23.1 | 695 | 0.24 | 2.48 | 1.5 |
4DH | 302 | 24.5 | 23.3 | 738 | 0.24 | 2.52 | 6.2 |
样品 | 表观密度/ kg·m-3 | 压缩强度/ MPa | 热导率/ W·(m·K)-1 |
---|---|---|---|
RPUF | 40.9 | 0.14 | 0.022 |
2DH | 42.7 | 0.14 | 0.022 |
4DH | 45.1 | 0.15 | 0.022 |
8D/6E/12A | 52.9 | 0.21 | 0.024 |
8D/2DH/6E/12A | 55.5 | 0.17 | 0.023 |
8D/4DH/6E/12A | 55.7 | 0.18 | 0.024 |
样品 | 表观密度/ kg·m-3 | 压缩强度/ MPa | 热导率/ W·(m·K)-1 |
---|---|---|---|
RPUF | 40.9 | 0.14 | 0.022 |
2DH | 42.7 | 0.14 | 0.022 |
4DH | 45.1 | 0.15 | 0.022 |
8D/6E/12A | 52.9 | 0.21 | 0.024 |
8D/2DH/6E/12A | 55.5 | 0.17 | 0.023 |
8D/4DH/6E/12A | 55.7 | 0.18 | 0.024 |
1 | Usta N. Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter[J]. Journal of Applied Polymer Science, 2012, 124(4): 3 372⁃3 382. |
2 | Gama N V, Ferreira A, Barros⁃Timmons A. Polyurethane foams: past, present, and future[J]. Materials, 2018, 11(10): 1841. |
3 | Qian L, Li L, Chen Y, et al. Quickly self⁃extinguishing flame retardant behavior of rigid polyurethane foams linked with phosphaphenanthrene groups[J]. Composites Part B: Engineering, 2019, 175: 107186. |
4 | Li L, Chen Y, Wu X, et al. Bi‐phase flame‐retardant effect of dimethyl methylphosphonate and modified ammonium polyphosphate on rigid polyurethane foam[J]. Polymers for Advanced Technologies, 2019, 30(11): 2 721⁃2 728. |
5 | Gurlek G, Altay L, Sarikanat M. Thermal conductivity and flammability of ulexite filled rigid polyurethane materials[J]. Acta Physica Polonica A, 2019, 135(4): 825⁃828. |
6 | Yurtseven R. Effects of ammonium polyphosphate/melamine additions on mechanical, thermal and burning properties of rigid polyurethane foams[J]. Acta Physica Polonica A, 2019, 135(4): 775⁃777. |
7 | Xi W, Qian L, Li L. Flame retardant behavior of ternary synergistic systems in rigid polyurethane foams[J]. Polymers, 2019, 11(2): 207. |
8 | Xi W, Qian L, Huang Z, et al. Continuous flame⁃retardant actions of two phosphate esters with expandable graphite in rigid polyurethane foams[J]. Polymer Degradation and Stability, 2016, 130: 97⁃102. |
9 | Xu Z, Duan L, Hou Y, et al. The influence of carbon⁃encapsulated transition metal oxide microparticles on reducing toxic gases release and smoke suppression of rigid polyurethane foam composites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 131: 105815. |
10 | Chen X, Li J, Gao M. Thermal degradation and flame retardant mechanism of the rigid polyurethane foam including functionalized graphene oxide[J]. Polymers, 2019, 11(1): 78. |
11 | Wang J, Xu B, Wang X, et al. A phosphorous⁃based bi⁃functional flame retardant for rigid polyurethane foam[J]. Polymer Degradation and Stability, 2021, 186: 109516. |
12 | Liu C, Zhang P, Shi Y, et al. Enhanced fire safety of rigid polyurethane foam via synergistic effect of phosphorus/nitrogen compounds and expandable graphite[J]. Molecules, 2020, 25(20): 4741. |
13 | Thi N H, Pham D L, Hanh N T, et al. Influence of organoclay on the flame retardancy and thermal insulation property of expandable graphite/polyurethane foam[J]. Journal of Chemistry, 2019: 4794106. |
14 | Wang X, Sun Y, Sheng J, et al. Effects of expandable graphite on the flame⁃retardant and mechanical performances of rigid polyurethane foams[J]. Journal of Physics: Condensed Matter, 2021, 34(8): 084002. |
15 | Thong Y X, Li X, Yin X J. Determining the best flame retardant for rigid polyurethane foam⁃tris(2‐chloroisopropyl) phosphate, expandable graphite, or silica aerogel[J]. Journal of Applied Polymer Science, 2021, 139(14): 51888. |
16 | Zhang W, Zhao Z, Lei Y. Flame retardant and smoke⁃suppressant rigid polyurethane foam based on sodium alginate and aluminum diethylphosphite[J]. Designed Monomers and Polymers, 2021, 24(1): 46⁃52. |
17 | Mahmoud Y, Safidine Z, Zeghioud H. Elaboration of nanostructured polyurethane foams/OMMT using a twin⁃screw extruder in counter⁃rotating mode[J]. Journal of the Serbian Chemical Society, 2018, 83(12): 1 363⁃1 378. |
18 | Xu W, Wang G, Zheng X. Research on highly flame⁃retardant rigid PU foams by combination of nanostructured additives and phosphorus flame retardants[J]. Polymer Degradation and Stability, 2015, 111: 142⁃150. |
19 | Cao Z J, Dong X, Fu T, et al. Coated vs. naked red phosphorus: A comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams[J]. Polymer Degradation and Stability, 2017, 136: 103⁃111. |
20 | Li A, Yang D D, Li H N, et al. Flame‐retardant and mechanical properties of rigid polyurethane foam/MRP/Mg⁃(OH)2/GF/HGB composites[J]. Journal of Applied Polymer Science, 2018, 135(31): 46551. |
21 | Cheng C, Yan J, Lu Y, et al. Effect of chitosan/lignosulfonate microencapsulated red phosphorus on fire performance of epoxy resin[J]. Thermochimica Acta, 2021, 700: 178931. |
22 | Xu B, Zhao S, Shan H, et al. Effect of two boron compounds on smoke suppression and flame retardant properties for rigid polyurethane foams[J]. Polymer Internatio⁃nal,2022,4. . |
23 | Akdogan E, Erdem M, Ureyen M E, et al. Rigid polyurethane foams with halogen‐free flame retardants: thermal insulation, mechanical, and flame retardant properties[J]. Journal of Applied Polymer Science, 2020, 137(1): 47611. |
24 | Zheng X, Wang G, Xu W. Roles of organically⁃modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam[J]. Polymer Degradation and Stability, 2014, 101: 32⁃39. |
25 | Thirumal M, Singha N K, Khastgir D, et al. Halogen‐free flame‐retardant rigid polyurethane foams: Effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams[J]. Journal of Applied Polymer Science, 2010, 116(4): 2 260⁃2 268. |
26 | Cheng J J, Qu W J, Sun S H. Mechanical properties improvement and fire hazard reduction of expandable graphite microencapsulated in rigid polyurethane foams[J]. Polymer Composites, 2019, 40(2): 1 006⁃1 014. |
27 | Wang S X, Zhao H B, Rao W H, et al. Inherently flame⁃retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties[J]. Polymer, 2018, 153: 616⁃625. |
28 | Yuan Y, Yang H, Yu B, et al. Phosphorus and nitrogen⁃containing polyols: synergistic effect on the thermal pro⁃perty and flame retardancy of rigid polyurethane foam composites[J]. Industrial & Engineering Chemistry Research, 2016, 55(41): 10 813⁃10 822. |
29 | Feng F, Qian L. The flame retardant behaviors and synergistic effect of expandable graphite and dimethyl methylphosphonate in rigid polyurethane foams[J]. Polymer Composites, 2014, 35(2): 301⁃309. |
30 | Peng H K, Wang X X, Li T T, et al. Mechanical properties, thermal stability, sound absorption, and flame retardancy of rigid PU foam composites containing a fire‐retarding agent: Effect of magnesium hydroxide and aluminum hydroxide[J]. Polymers for Advanced Technologies, 2019, 30(8): 2 045⁃2 055. |
31 | Shi X, Jiang S, Zhu J, et al. Establishment of a highly efficient flame⁃retardant system for rigid polyurethane foams based on bi⁃phase flame⁃retardant actions[J]. RSC Advances, 2018, 8(18): 9 985⁃9 995. |
[1] | 杨金, 陈鹏然, 高培鑫. DIDOPO与POSS/EG协同阻燃环氧树脂泡沫及机理研究[J]. 中国塑料, 2022, 36(9): 38-45. |
[2] | 宋德建, 于鹏, 彭进松, 许苗军. 阻燃EVA热熔胶的制备及其在线缆修复中的应用研究[J]. 中国塑料, 2022, 36(9): 53-56. |
[3] | 孟鑫, 王小龙, 公维光, 金谊. “三源一体”壳核型阻燃剂的制备及其在聚乳酸中的应用[J]. 中国塑料, 2022, 36(9): 96-104. |
[4] | 李亚飞, 孙小杰, 任月庆, 张寅灵. 阻燃抗静电聚烯烃板材的制备与性能研究[J]. 中国塑料, 2022, 36(8): 23-27. |
[5] | 陈佰全, 郑友明, 田际波, 张磊, 王金松, 林夏洁, 段亚鹏. 高含量玻璃纤维增强阻燃聚酰胺材料的制备与性能[J]. 中国塑料, 2022, 36(8): 42-48. |
[6] | 吴唯, 胡焕波, 沈辉, 赵天瑜. 4A沸石与钙镁铝水滑石对膨胀阻燃聚丙烯的双重协效阻燃作用与机理[J]. 中国塑料, 2022, 36(7): 1-7. |
[7] | 魏思淼, 邵路山, 许准, 刘艳婷, 赵思衡, 许博. 次磷酸盐⁃环四硅氧烷双基化合物复配二乙基次磷酸铝对PA6的阻燃性能研究[J]. 中国塑料, 2022, 36(7): 129-135. |
[8] | 李金凤, 梁卓恩, 彭新龙. 膨胀型阻燃剂/二乙基次磷酸铝阻燃改性不饱和树脂基复合材料[J]. 中国塑料, 2022, 36(6): 116-123. |
[9] | 陈轲, 刘鸣飞, 赵彪, 潘凯. 有机硅改性高分子材料阻燃及耐烧蚀性能研究进展[J]. 中国塑料, 2022, 36(6): 149-154. |
[10] | 孙旗, 高兴, 崔雪梅, 连慧琴, 崔秀国, 汪晓东. 黑磷烯纳米阻燃剂研究进展[J]. 中国塑料, 2022, 36(5): 133-139. |
[11] | 杨木森, 钱立军, 王靖宇, 赵震, 王光禹, 辛晓华. 磷酸三苯酯和甲基八溴醚在阻燃聚苯乙烯中的协同行为研究[J]. 中国塑料, 2022, 36(5): 36-42. |
[12] | 李梦琪, 陈雅君. 纳米材料阻燃聚乳酸的研究进展[J]. 中国塑料, 2022, 36(4): 102-114. |
[13] | 徐伟华, 郑宇, 沈向阳, 张炎, 刘桔文, 严石静. 不同POSS对磷⁃硅协同阻燃环氧树脂性能的影响[J]. 中国塑料, 2022, 36(4): 115-120. |
[14] | 刘川, 许苗军, 王景春, 李斌. 膨胀石墨对乙烯基硅橡胶的阻燃作用研究[J]. 中国塑料, 2022, 36(4): 15-18. |
[15] | 张书诚, 唐文斌, 于天娇, 徐珍珍, 邢剑. 不同含量配比制备聚氨酯泡沫及其性能研究[J]. 中国塑料, 2022, 36(3): 104-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||